Methods for the evaluation and synthesis of
multiple sources of information applied to
nuclear computer codes

S. Destercke ™! E. Chojnacki

Institut de Radioprotection et de Streté Nucléaire
18115 St-Paul Lez Durance, France

Abstract

This work is devoted to methods used to evaluate and synthesize multiple sources
giving information about a variable which true value is not precisely known. We
first recall probabilistic and possibilistic approaches to solve the problem. Each ap-
proach offers a formal setting to evaluate, synthesize and analyze information coming
from multiple sources. They are then applied to the results of uncertainty studies
performed in the framework of BEMUSE project.
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1 Introduction

Best estimates computer codes are increasingly used in nuclear industry for
the accident management procedures and have been planned to be used for
the licensing procedures. Contrary to conservative codes which are supposed
to give penalizing results, best estimate codes attempt to calculate accidental
transients in a realistic way. It becomes therefore of prime importance, in par-
ticular for technical organizations in charge of safety assessment (e.g. IRSN),
to know the uncertainty on the results of such codes. Thus statistical methods

* Corresponding author

Email addresses: sebastien.destercke@irsn.fr (S. Destercke),
eric.chojnacki@irsn.fr (E. Chojnacki).
L Address : Institut de Radioprotection et de Streté Nucléaire, Bat 702, 13115 St-
Paul Lez Durance, France Tel: 433 4 42 19 97 02 Fax: +33 4 42 19 91 66

Preprint submitted to Elsevier August 19, 2008



have been developed to take into account the uncertainties coming from the
input data and models parameters.

Studies performed from these methods (e.g. UMS, BEMUSE) allowed to point
out two important issues:

(1) the difficulty and the need to build synthetic representations of input
uncertainty
(2) the need to compare, analyze and synthesize results of uncertainty studies

It appears that both issues can be viewed as problems of information fusion
in presence of multiple sources. Concerning the former issue, the evaluation
of input uncertainty comes either from experts or from experimental results.
It is therefore desirable to take these multiple sources into account during the
modeling of input uncertainty. In the same way, by looking at the result of each
uncertainty study as a single source of information, their analysis, comparison
and synthesis can be viewed as an information fusion problem.

In this paper, we propose to recall the principles of the probabilistic method
and to show the advantages of extending these principles to the frame of
other uncertainty theories (here, possibility theory). A practical application
(related to the second issue mentioned above) based on the results obtained
during BEMUSE benchmark is described.

The rest of the paper is divided in two main sections. Section 2 introduces
the problems of information modeling, evaluation and aggregation, as well as
how probability and possibility theories can be used to solve these problems.
Section 3 then explains how these methods have been applied to the BEMUSE
program, and comments the various results.

2 Methodology

Most of the formal approaches proposing to handle information provided by
multiple sources consists in three main steps : modeling the information pro-
vided by each source, evaluating the sources by the quality of the provided
information and finally synthesizing this information. Results can then be used
either to build a final uncertainty model of the studied variable or to analyze
the different sources and the relations between them.

This section details each of these steps, both for the probabilistic and the
possibilistic approaches.

The probabilistic approach is explained in ( (Bedford and Cooke 2001),Ch 10)
and is extensively studied and motivated in (Cooke 1991). It is mathematically



well-founded and its practical interest has been confirmed by many applica-
tions over the years. Nevertheless, it can be argued that using it when available
information is scarce or not fully reliable (as is often the case when multiple
sources are needed) forces one to introduce additional assumptions that are
not justified by available knowledge (Ferson and Ginzburg 1996).

Possibility theory (Dubois and Prade 1988), on the other hand, offers a simple
and convenient formal alternative that explicitly takes account of imprecision
and scarcity in the available information. As we shall see, the possibilistic ap-
proach also offers more aggregation operators than the probabilistic one. This
last point amount to a greater flexibility in the information treatment. The
possibilistic approach presented in this paper heavily draws on the methodol-
ogy presented in (Sandri et al. 1995).

For sake of brevity, we only introduce in this paper the basic ideas of the
methods as well as the formulas that will be used in the application. The
methods and the case studied here are the most commonly encountered in
practical applications, and are likely to be directly applicable in numerous
situations. Otherwise, we send back readers to works referenced in this paper
for generalizations and more complex propositions.

2.1 Modeling information

When multiple sources give information about a badly known value (due to
lack of experimental values, of imperfect observation, ...), this information
consists most of the time in some (imprecise) characteristics or parameters of
an unknown probability distribution. Usually, the provided information is not
sufficient to define a single probability distribution, and there is potentially
an infinity of probability distributions corresponding to the information. The
usual procedure is to single out a distribution that fits the given informa-
tion and minimize some information measure (typically, the entropy). This
procedure is based on the legitime informal argument that, if one have to
add information, it should be the least possible amount. An alternative is to
consider other models than probability distributions (such as possibility distri-
bution) that explicitly takes account of this imprecision and incompleteness in
the information given by the source. This way, the model becomes less precise,
but no information is added to the one we have.

2.1.1 probabilistic modeling

Partial probabilistic information can come in many different ways: the value of
some percentiles, characteristics of a parameterized family of distribution (e.g.
mean and variance of a normal distribution) to which the random variable is
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Figure 1. Example of probabilistic modeling

supposed to belong, information about the mode, the mean, the median, or
even qualitative comparisons (see (Walley 1991), ch. 4. for a review).

For simplicity, we consider in this paper that the information is given in term
of percentiles of the unknown probability distribution (typically, the 5%, 50%
and 95% percentiles). If X is the unknown variable, and P a probability mea-
sure, then the k% percentile, denoted ¢, is the deterministic value z s.t.
P(X < z) = k%. This choice is explained by the fact that percentiles are
the commonest type of information encountered in applications where few
experimental data or evidences are available. Choosing the probability distri-
bution that add a minimal amount of information then comes down to make
a linear interpolation between each percentiles. If B + 1 percentiles values
have been given (including goy and ¢i00% ), then the corresponding probability
density p = (p1,...,pp) is an histogram made of B interpercentiles (an inter-
percentile being the difference between two successive qyo, values given by the
source. If more than one sources give information about a variable, we will
note ¢; and ¢, the lower and upper bounds of the intrinsic range of variation
(i.e. the minimum and maximal values taken by the variable)

Figure 1 represents the cumulative distribution function (CDF) corresponding
to the clad temperature of a reactor where information given by the source
is qo = 500 K, g5 = 600 K ,q50% = 800 K,qo5% = 900 K, qi00% = 1000 K.
The corresponding probability density p = (0.05,0.45,0.45,0.05) is pictured
in dashed lines.

2.1.2  Possibilistic modeling

A possibility distribution over the reals is formally defined as a mapping = :
R — [0, 1]. Formally, it is equivalent to the membership function of a fuzzy
set (Zadeh 1978).

From this distribution can be defined two set-functions that describe the like-
lihood of events:

e Possibility measure: II(A) = sup, 4 7(x).
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Figure 2. Example of possibilistic modeling

e Necessity measure: N(A) =1 —II(A°).

Possibility degree of an event expresses the extent to which this event is plausi-
ble, i.e., consistent with our knowledge. Necessity degrees express the certainty
of events, by duality.

Given a possibility distribution 7, to every value o € [0, 1] we can associate
an a-cut A, which is the set A, = {z|r(z) > a}. a possibility distribution
can then be viewed as a collection of nested sets that are a-cuts (i.e. A; C
A, C Az C Ay where a > f3).

A possibility distribution can also be interpreted as the simplest model de-
scribing a family of probability distributions (Dubois and Prade 1992), and
is thus a model of partial probabilistic information. In this latter case, each
a-cut can be seen as a confidence interval having a confidence level 1 — a,
since we have P(A,) > N(A,) (N(A,) = 1 — a) where P is the imprecisely
known probability measure. Possibility distributions are natural candidates
to model incomplete probabilistic information given in term of confidence in-
tervals, but can also be used when the information concerns other character-
istics (e.g. mean, percentiles, mode) of the unknown probability distribution
(see (Baudrit and Dubois 2006,Dubois et al. 2004) for detailed discussions).

Figure 2 represents a possibility distribution corresponding to the clad tem-
perature of a reactor where information given by the source consists of four
intervals [750 K,850 K]J,[650 K,900 K], [600 K,950 K],[500 K,1000 K]
which have respective confidence levels of 10%, 50%, 90% and 100%.

2.2 FEvaluating the sources

Once sources have given information about the value of a variable, it is de-
sirable to evaluate the quality of the information delivered by the sources, in
order to know which are the "best" sources. In the approaches used here, this
evaluation is done by two criteria:

e Informativeness (Inf): evaluate the precision of the information given by the
sources, by using a measure of comparison between the model built from



the source information and the model corresponding to ignorance in the
considered theory. Of course, the more precise the source, the more useful
it is.

e Calibration (Cal): evaluate, by using so-called seed variables, how good the
evaluations of the sources are. Seed-variables are variables which are in
nature close (i.e. concern similar physical phenomenum) to the unknown
variables and which exact value are unknown to the sources but are (or will
be) known to the assessors. Computing a calibration score then consists
of comparing the information given by the sources with the true values of
the seed-variables. A "good" source is then a source which information is
in concordance with the observed values of the seed variables. Here, we

consider that the seed variable values are precisely known 2.

A global score rating the source is then computed from these two criteria.
Such a score should follow common sense rules such as fairness (the more
the sources is precise and close to observed values, the greater its score) ,
pertinence (scores computation should be based only on observed values) and
soundness (scores between sources should be directly comparable). Let us also
note that the definition of suitable seed-variables must be done with great care,
and is feasible in most situations (see (Cooke 1991) for a detailed discussion).

Once the global score of each source is determined, it is used either to discrim-
inate sources between themselves or directly in the aggregation procedure.

2.2.1 Probabilistic evaluation

Informativeness In probability theory, the model commonly used to rep-
resent a state of ignorance regarding a particular variable is the uniform dis-
tribution, which will be denoted u. Let p = (p1,...,pg) be the probability
distribution derived from the source information. Then, the informativeness
of a source s for this variable is

1pw) = Y- pitos () )

=1

where I(p,u) is the Kullbach-Leibler (KL) divergence (sometimes called dis-
tance, although it is not a metric) of u from p. If we take back the example from
figure, then we have p = (0.05,0.45,0.45,0.05) and u = (0.20, 0.40, 0.20, 0.20).
If sources provide information for more than one seed variable, the global in-
formativeness score of a source s is the mean of its informativeness over all
seed variable. Let N be the number of seed variables and let I(p;, u;) denote

2 Extension when the true value of the seed variables is itself imprecisely known
can be found in ( (Kraan 2002), Ch. 3) and in (Sandri et al. 1995), respectively for
the probabilistic and possibilistic approaches.



the informativeness score for the j** seed variable. The global informativeness
score of source s is then

1 N
Infy(s) N ZI (pj, uj) (2)

J=1

Let us note that the uniform distribution is always taken over the entire range
[q1, qu] (even if a source has given values qo > ¢; and gio0% < qu)-

Calibration Suppose a source s has given the same series of percentiles for
N different seed variables. We thus have probability distributions that have the
same interpercentiles and can be viewed as one distribution p = (p1,...,pg)
(the values associated to the fixed percentiles can be different for each seed
variable). Now, let us assume that for r; N seed variables, realizations fall into
interpercentile py, into ps for ro N realizations, etc. r = (r1,...,7rp) is then the
empirical density derived from observations of seed variables. Again, we use
the KL divergence of p from r to measure the "surprise" of learning » when p
is thought to be the right answer, we thus compute

rp) = EB: log (p) (3)

which reach its minimal value 0 if and only if » = p. Since it is known that
the value 2 x N x I(r,p) converge to a chi-squared distribution with B — 1
degrees of freedom as N gets larger (i.e. P(2% N x I(r,p) < z) — x%_,(2)),
the calibration of a source s is defined as

Caly(s) =1—x%5_,(2% N xI(r,p)) (4)

which can be interpreted as the probability of the source to be "right". In
practice, N (the number of seed variables) should be around 10 (or more) to be
sure to have good results. This way of computing the calibration score assumes
that a source is well calibrated if p;% of the realizations of seed variables fall
into the interpercentile p; of the N built probability distributions. Although
these assumptions are perfectly justified in a probabilistic framework, they
can be challenged if one accepts to use other uncertainty models (as already
pointed out in (Sandri et al. 1995)). This will be illustrated and discussed in
the application.

Figure 3 illustrates the process of calibration. In this figure, 2 sources each gives
their percentiles qou, 45%, 950%, Go5%, G100% for two different seed variables. So,
the common interpercentile distribution is p = (0.05,0.45,0.45,0.05). If we
note r* the empirical distribution of source i given the realisations of seed
variables, we have r' = (0,0.5,0.5,0) and r* = (0.5,0,0.5,0). Given these
seed variables and the information given by the sources, the first source is
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Figure 3. Example of calibration

thus judged better calibrated than the second (as the empirical distribution
for source 1 is closer to p). Let us also note that, in term of informativeness,
source 2 has a better score than source 1.

Global score If M sources give information about N seed variables, the
global score of the m'* source s, is given by

Wy(sm) = Cx X Infp(sm) x Caly(sm) (5)

where Inf,(sm), Cal,(sy,) are respectively the informativeness and calibration
scores introduced above, and C,, is the function

Lif Caly(spm) > K
Cn - (6>
0if Caly(sm) < Kk

where level k makes sure that sources judged too badly calibrated are rejected.
k insures that sources cannot get high scores by giving very precise but badly
calibrated information about the seed variables. In practice, k can be set to a
fixed value or be tuned so that the combined probability distribution would
get a maximized score on seed variables (see (Cooke 1991) for more details).

Scores of the different sources are then normalized so that they sum up to one.

The final score w,(s,,) of the m™ source is
W(sm)
Wy (Sy,) = 7

2.2.2 Possibilistic evaluation

Let us first recall that the cardinality |A| of an interval A = [a,a], equal to
a — a, is a measure of the imprecision of this interval.

Informativeness Given the range ¢, q,, the possibilistic model correspond-
ing to complete ignorance is the possibilistic distribution g, s.t. mg,(x) =1



if z € [q;, qu], 0 otherwise (let us note that this model is formally equivalent to
the interval [q;, ¢,], while the model used for ignorance in probability is NOT
equivalent to this interval).

Let us now consider a source s which information about a seed variable is
modeled by possibility distribution 7. the cardinality |m;| of this distribution,

which reads
qu

Iy = /ﬂ(x)dx
a
Which is simply is the area under the distribution, and also a measure of the
imprecision of the information given by s. Informativeness of s can then be

computed as

[(77' 8) |7Tlg”| |7TS‘

il )
where the denominator is a normalization factor. Equation (8) has value 1
iff 7, is reduced to a precise value and 0 iff 7, = 7, (note that |my,| =
qu — q)- If source s give information about N seed variables, then its global
informativeness score is

N
Infa(s) = 52 - 1) (9)

j=1

where I(m,,, s) is equation (8) computed for the possibility distribution corre-
sponding to the m* seed variable.

Calibration Let X be a seed variable, and z* the true (known) value of this
variable. Then, if source s information correspond to the possibilistic model
s, the calibration score is simply the value 7s(z*), since this value measures
to which extent z* is judged plausible as the true value of X by source s. If the
source gives information about N seed variables, the global calibration score
is

Cal( Z?TS n (10)

where 7 is the observed value of the n'" seed variable, and 7, is the possi-
bility corresponding to the information given by s for the n'* seed variable.

Global score As for the probabilistic approach, the global score of the m®™®
source among M sources is given by is given by

Wi(sm) = Co X Infr(sm) X Caly(sm) (11)



2.3  Synthesizing the information

As said before, aggregating the information given by multiple sources can
have two purposes: either build a reliable synthetic model that will be used
in further processing of the information, or analyze the available information
and the relations between the sources (conflict, concordance, ...). Basically,
aggregation operators follows three main kinds of behavior:

e Conjunctive behavior: conjunctive operators for uncertainty models are the
equivalent of intersection for usual intervals. The benefit of conjunctive op-
erators is that the resulting model is more precise than any of the model
provided by the multiple sources. Nevertheless, conjunctive operators make
the assumption that all the sources are reliable, and can result in poor re-
liable models or even in an empty result (i.e. in cases similar to disjoint
intervals) if this assumption is not verified. In this sense, using conjunctive
operators correspond to an optimistic or adventurous attitude.

e Disjunctive behavior: disjunctive operators for uncertainty models are the
equivalent of union for usual intervals. The result of disjunctive operators
is usually an imprecise, but highly reliable model. Nevertheless, the result
will often be too imprecise to be really useful. Disjunctive operators make
the cautious assumption that at least one source is reliable. In this sense,
they correspond to a cautious or pessimistic attitude.

e Compromise behavior: compromise operators are between a conjunctive and
a disjunctive behavior. The most commonly used of such operators is the
arithmetic mean, which can be associated to a statistical counting where
each model given by a source is considered as an experiment. Compromise
operators are often use to resolve the conflict between sources while trying
at the same time to gain a maximum of informativeness.

For a more complete characterization of aggregation operators, see (Bloch 1996).
Let us note that if the aim of the aggregation is to analyze the information and
the sources having delivered it (the purpose followed in this paper), operators
from which one can extract meaningful information are to be privileged, while
it won’t forcefully be the case (although it is often desirable) when the aim is
to build a synthetic representation. We now give some details about the basic
operators used in probability and possibility theory.

2.3.1 probabilistic synthesis

Desirable properties and usefulness of various aggregation operators of proba-
bility distribution has been the subject of many research and discussions over
the past (see (Clemen and Winkler 1999) for a recent review). However, it
is now commonly accepted that the (weighted) arithmetic mean is the most

10
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Figure 4. Probabilistic Aggregation Illustration

sensible direct?® aggregation operator to be used with probability distribu-
tions (again, see (Cooke 1991) for a review and (McConway 1981) for a more
detailed discussion). If M sources give their advice about a variable, the arith-
metic mean reads

Pmean = Z W;Pi (12)
=1

where w; and p; are respectively the weight and the probability distribution
obtained from the information given by the i*" source.

Usual conjunctive? and disjunctive operators are not applicable in the prob-
abilistic approach (union of two probability distributions is a set of distribu-
tions, not a unique distribution, while the intersection is always empty, except
when all distributions are equal). Figure 4 illustrates the fusion of distributions
coming from 2 sources which have equal weights.

2.3.2  possibilistic synthesis

There are numerous aggregation operators in possibility theory (see

(Dubois and Prade 2001) (Oussalah et al. 2003) for reviews). Although choos-
ing one particular operator is not always easy, their multiplicity bring more
flexibility in the aggregation of the information given by multiple sources, and
often permit a finer analysis of the available information. In this paper, we re-
strict ourselves to the three most commonly used conjunctive, disjunctive and
compromise operators, which are the one used in the subsequent application.

Conjunctive operator given m sources, each of them giving information
modeled by a possibility distribution 7; ¢ = 1,...,n, the conjunction is the

3 Bayesian approaches won’t be used here, because they’re more closely related to
the updating rather than to the aggregation of information

4 We must mention that the geometric mean can be interpreted, to some extent, as
a conjunctive operator

11
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minimum of all these distributions. Its result is denoted 7 and reads

Tn(xz) = min (m(z)) Vo (13)

i=1,...,n

Arithmetic mean The compromise operator that will be used here is the
equivalent of the arithmetic mean used in probability theory (and can thus be
compared to it in term of behavior). Its result is denoted 7,,¢q, and reads

Tmean(T) = ilwi (mi(z)) Vo (14)

Disjunctive operator The disjunction operator correspond to the maxi-
mum ® taken over all distributions. Its result is denoted 7, and reads

mu(zr) = max (m(z)) Vo (15)

i=1,...,n

Figure 5 illustrate the aggregation of two possibility distributions (sources
have equal weights). Let us note that the result of the conjunction and of
the arithmetic mean are not forcefully normalized (i.e. there is no value z s.t.
Tres = 1). In this last case, the height h = max,cg, ¢.1(7res()) of the resulting
distribution m,., can be interpreted as a measure of the conflict between the
sources resulting from the aggregation.

Let us note that the methodologies described above are general and can be
equally applied to input uncertainty models and to results of uncertainty stud-
ies. In the sequel, we concentrate on the second case.

> The minimum and maximum are respectively part of a wider family of operators
called T-norm and T-conorm.

12



3 Application to BEMUSE program

Evaluating nuclear power plant performance during transient conditions is a
very important issue in thermal-hydraulic research since nuclear energy was
used to produce electricity.

During the years, a huge amount of experimental data has been produced from
very simple loops and from Integral Test Facilities. A lot of computer codes
have also been developed and made available to the nuclear community in or-
der to simulate variables of interest during transient conditions. It is important
to evaluate the predicting reliability of such codes by comparing their results
to experimental data obtained in small scale facilities. Combining the codes
with uncertainty analysis allows for a more realistic modeling of the parameter
knowledge, and can thus be helpful to make better predictions. Nevertheless,
the final results of such uncertainty analysis can be difficult to compare and
to analyze, and the agreement level of such results with experimental data
difficult to assess. Hopefully, techniques introduced in section 2 are designed
to do such operations, and can thus help the analyst in his task.

To show the usefulness and potential applications of the methodology, we will
apply them to the results of the BEMUSE (Best Estimate Methods - Un-
certainty and Sensitivity Evaluation) programme (OCDE 2007) performed by
the NEA (Nuclear Energy Agency). Our study will focus on the results of the
first step of the programme, in which ten participants from nine organisations
were brought together in order to compare their respective uncertainty anal-
ysis with experimental data coming from the experiment L2-5 performed on
the loss-of-fluid test (LOFT) facility. Although most participants (9 out of
10) used similar methodologies to complete their uncertainty evaluation, their
results were quite different, due to the fact that different codes were used and
that the number, models and physical nature of inputs were different for each
participant.

The ten participant of the BEMUSE programme, as well as the code they
used and their organization are summarized in table 1. In the first step of BE-
MUSE programme, the L2-5 experiment has been chosen to apply uncertainty
methodologies on a large break loss-of-coolant accident (LB-LOCA transient)
performed on an integral test facility.

The L2-5 experiment has been completed on 16 June 1982 in the LOFT facility
at INEL (Idaho National Engineering Laboratory). This facility simulated the
major components and the system responses of a commercial PWR during a
loss-of-coolant accident (LOCA). The core was a semi-scale one with an active
height of 1.70m. The experimental assembly included five major subsystems
which were instrumented with measurement devices.

13



Participant ~ Used code
CEA CATHARE

GRS ATHLET

IRSN CATHARE
KAERI MARS

KINS RELAP5

NRI1 RELAP5

NRI2 ATHLET

PSI TRACE

UNIPI RELAP5

UPC RELAP5

Table 1

Participants of BEMUSE programme

The experiment L2-5 itself simulated a guillotine rupture of an inlet pipe
in a pressurized water reactor with a true nuclear core. the experiment was
initiated (after operating the reactor at 36.0 MW for 40 effective full power
hours to build up a fission decay product inventory) by opening two quick-
opening blowdown valves upstream a blowdown suppression tank simulating
the reactor containment behavior.

As an output of their uncertainty analysis, each participant had to provided
lower bounds, reference values and upper bounds for four scalar output param-
eters as well as the time trends of two output parameters (maximum cladding
temperature and upper plenum pressure). For each of these output parame-
ters, experimental values are available (thus, they can be taken as so-called
seed variables to assess sources predictive quality). In this paper, we have
only considered the four scalar output parameters. These four scalar output
parameters are:

(1) The first Peak Cladding Temperature (1PCT) during the blowdown phase
(2) The second peak cladding temperature (2PCT) during the reflood phase
(3) The Time of accumulator injection (77,;)

(4) The Time of complete quenching (77)

Table 1 summarizes the values given by the participants for the lower bounds,

reference calculation and upper bounds for each output. Obtained experimen-
tal values are also recalled.

14



1PCT (K) 2PCT (K) Tinj (5) T, (s)

Low Ref Up Low Ref Up Low  Ref Up Low  Ref Up

CEA 919 1107 1255 | 674 993 1176 | 14.8 16.2 16.8 30 69.7 98

GRS 969 1058 1107 | 955 1143 1171 14 156 176 | 629 80.5 103.3

IRSN 872 1069 1233 | 805 1014 1152 | 15.8 16.8 17.3 | 419 50 120

KAERI 759 1040 1217 | 598 1024 1197 | 12.7 13.5 16.6 | 60.9 73.2 100

KINS 626 1063 1097 | 608 1068 1108 | 13.1 13.8 13.8 | 47.7 66.9 100

NRI1 913 1058 1208 | 845 1012 1167 | 13.7 14.7 17.7 | 51.5 66.9 87.5

NRI2 903 1041 1165 | 628 970 1177 | 12.8 153 178 | 474 62.7 826

PSI 961 1026 1100 | 887 972 1014 | 15.2 156 16.2 | 55.1 785 88.4

UNIPI 992 1099 1197 | 708 944 1118 8.0 16.0 23.5 | 414 62.0 81.5

UPC 1103 1177 1249 | 989 1157 1222 12 13.5 16.5 | 56.5 63.5 66.5

Exp. Val. 1062 1077 16.8 64.9
Table 2
Scalar output values by participants (Exp. Val. : Experimental value)

3.1 Modeling the information

Except for UNIPI, all the participants obtained the lower and upper bound val-
ues so that they were respectively lower and larger than the 5% and 95% per-
centiles with a 95% confidence level (according to order statistics (Conover 1999)).
These lower and upper bounds can thus be considered as conservative evalua-
tions of the 5% and 95% percentiles of the unknown probability distributions.
Since they are conservative, we have chosen to take them as "fair" evaluations
of, respectively, g1, and qggy.

Given a particular output, let us call ¢, and gpayx the minimal and maximal
values of the lower and upper bounds of this output, taken over all participants.
Then, for each output, we take as [q, ¢,] the interval [gmin, ¢max| increased by
2% (e.g. for 1PCT, ¢umin = 626 (KINS), gmax = 1255 (CEA) and [q;, q.] =
620, 1261)).

According to this information, we take the following models:

Probabilistic model: Since the reference values Ref are often close to the
middle of interval [Low,Up|, and as nominal values are often associated to
the median of the distribution, we have chosen to take, for each partici-
pant and output, the following distribution : (qo%, ¢1%, 950%, 999%, q100%) =
(qi, Low, Ref,Up, q,). For example, the distribution corresponding to the in-
formation given by NRI1 for the 2PCT is (qo, = 592, 1, = 845, qs0% =

15
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Figure 6. Probability and possibility dist. of NRI1 for the 2PCT

1012, o9, = 1167, q100% = 1228). The only exception to this rule is the distri-
bution of KINS for T,;, since concentrating 50% of the probability mass on
a single value would have no sense. Thus, the distribution of KINS for T;,; is
(q0% = 7.8, 1 = 13.1, g9 = 13.8, qro0% = 23.7).

Possibilistic model: The interval [g;, ¢,] common to each source is consid-
ered as containing with certainty the true unknown value. By giving interval
[Low, Upl, each source provide a 98% confidence interval, while it is natural to
consider the nominal value Ref as the most plausible one. For each source, the
possibility distribution that fits this information is s.t. 7(¢;) = 0, 7(Low) =
0.02,m(Ref) = 1,7(Upp) = 0.02, 7(q,) = 0 (with linear interpolation between
each points). When taken as an imprecise probabilistic model, this possibility
distribution dominate the probabilistic model (see (Baudrit and Dubois 2006)).

Figure 6 illustrates both models built from the information of NRI2 concerning
the second PCT.

3.2 FEvaluating the sources

For the evaluation steps, the four scalar parameters were considered as seed
variables, as their experimental values are known. Evaluation was then per-
formed according to the methodology described in section 2.2, with the uncer-
tainty models given above. Table summarizes the obtained informativeness,
calibration and global scores for both approaches.

Many interesting comments can be made about these results, both from method-
ological and application standpoints.

3.2.1 Comments on methodology

Global agreement: although there are a few noticeable differences between
the results of the two approaches, they globally agree. Indeed, between the
first five participants given by the two approaches, four are in common (i.e.
IRSN, KINS, NRI1, UNIPI), while the same statement is of course true for
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Prob. approach Poss. approach

Inf. Cal. Global Inf. Cal. Global

CEA | 8(0.77)  5(0.16)  6(0.12) | 8(0.71) 6 (0.55) 7 (0.40)
GRS | 4(1.23)  1(0.98) 1(1.21) | 3(0.84) 7(0.52) 6 (0.44)
IRSN | 5(0.98)  2(0.75)  2(0.73) | 6(0.73)  1(0.83) 1 (0.60)
KAERI | 9(0.68) 5 (0.16) 7(0.11) | 9(0.70)  8(0.48) 8 (0.34)
KINS | 3(1.29) 5(0.16)  5(0.21) | 7(0.72) 3 (0.67) 3 (0.49)
NRIL | 7(0.79)  2(0.75)  3(0.59) | 5(0.75)  5(0.63) 4 (0.47)
NRI2 | 6(0.79)  8(0.13)  8(0.10) | 4(0.78)  2(0.72) 2 (0.56)
PSI 1(1.6) 10 (0.004) 10 (0.008) | 1(0.88) 10 (0.25) 10 (0.22)
UNIPI | 10 (0.53) 2 (0.75) 4(04) | 10(0.69) 4(0.67) 5 (0.46)

UPC | 2(144)  9(0.02)  9(0.025) | 2(0.87) 9 (0.28) 9 (0.24)

Table 3
Results of sources evaluation (Inf.: informativeness ; Cal.: Calibration) by ranks
(values)

the last five (i.e. CEA, KAERI, PSI and UPC are common to both rankings).
This is not surprising, since even if the models and formulas used by each
approach are different, the conceptual methodology is the same for both (i.e.
comparing information to non-informative state for informativeness and to
known experimental values for calibration).

Preference given to well calibrated sources: a good source is a source
which is both informative and well calibrated, or in other words which is useful
and reliable. Nevertheless, these two goals are somewhat contradictory, since
in general, the more precise a source is, the more chance it has to be wrong,
and inversely. In our case, this is well exemplified by UNIPI (poorly informa-
tive, well calibrated), PSI and UPC (highly informatives, poorly calibrated).
From the results, we see that both approaches tend to privilege well calibrated
sources rather than informative sources (for instance, UNIPI has an high rank,
even if it the most imprecise, while both UNIPI and UPC have low ranks, even
if they are the most informative). This is a good thing, since it is preferable
to have reliable information rather than very precise, but wrong information.

Divergences in informativeness scores: In both approaches, informative-
ness ranking agree together, except for KINS (high and low rank, respectively
for the probabilistic and possibilistic approach). This is due to the fact that,
although KINS have rather wide and imprecise intervals [Low, Up|, the refer-
ence value is often very close to one of these two values, thus the corresponding
distributions are more dissymmetric than for the other participants. The prob-
abilistic approach tend to focus on this dissymmetry, while the wide span of
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[Low, Up] is dominating in the possibilistic approach.

Divergences in calibration scores: although both rankings agree less in
the case of calibration scores, we have noticed above that, except for GRS
and NRI2, the same sources have high (low) ranks in both approaches. In
particular, UPC and PSI are the lowest ranked in each approach, being the
only two participants for which two experimental values were outside intervals
[Low, Up]. The differences, mainly noticeable in the scores of GRS and NRI2,
comes from the fact that the formulas used for computing calibration are based
on two different notions:

e for the probabilistic approach, the formula assumes that, for a well cal-
ibrated source, the experimental distribution should converge to the dis-
tribution given by the source. This experimental distribution is updated
according to the interpercentiles in which experimental values fall for each
seed variable, without taking into account the metric (i.e. where the experi-
mental value actually is in the interprecentile, if it is closer to Ref, to Upp,
in the center of the interval, ...). Probabilistic approach assumes that, if
the source is well calibrated, the true value will fall p;% of the time in the
first interpercentiles, p»,% in the second, etc.

e the possibilistic approach does not assume any kind of convergence between
the given distributions and an experimentally built distribution. It rather
considers, for each seed variable, how far is the observed value from the
nominal value given by the source. It is thus based on metric considerations
and not on convergence.

Indeed, if we look at the information given by NRI2 for the four seed vari-
ables, each realizations falls into the interval [Ref, Upp| (while being close
to Ref), while for GRS, they are evenly divided between [Low, Ref] and
[Ref,Upp|. Thus, the experimental distributions for NRI2 and GRS are re-
spectively rV#2 = (0,0,1.0,0) and r9%5 = (0,0.5,0.5,0), while the source
distributions are p = (0.01,0.49,0.49,0.01), which explains why GRS has the
highest ranking in the probabilistic approach, and NRI2 one of the lowest.
In the possibilistic approach, the high rank of NRI2 comes from the facts
that experimental values are close to the given Ref values and that intervals
[Low, Upp| are cautious, while remaining no too wide (as shows the informa-
tiveness score of NRI2). GRS score is mainly penalized by the narrower (and,
hence, more adventurous) intervals [Low, Upp] as well as by the fact that ex-
perimental values for T7,,; and T, are respectively close to the given Upp and
Low values. Claiming that one approach is always better than another makes
poor sense, but since we consider here imprecisely known non-random val-
ues for which we have few information, the possibilistic approach seems more
fitted to the problem at hand.

The need of seed variables: the recommended number of seed variables
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for the probabilistic approach is around ten. This need mainly comes from
the fact that the probabilistic approach supposes the convergence between
the experimental distribution and the distribution given by a well-calibrated
source. In the application, the poor discriminating power of calibration scores
(two groups of three participants have equivalent scores) shows some of the
defect of taking fewer seed variables. Let us note that the possibilistic approach
is meaningful even if only one seed variable is available (of course, the more
seed variable we have, the more stable are the score of the sources)

3.2.2 Comments on results

Ranking with respect to the used code: we can observe that the ranking
of the participants is poorly correlated with the particular code used to achieve
the computations. For instance, GRS and NRI2, as well as IRSN and CEA,
have quite different rankings in both approaches, even if they use the same
computation code (the same is true for the four participants using RELAP5,
whose rankings range from 3 to 9). This indicates that, more than the peculiar
used code, it is how it is used that mainly matters.

Coherence with informal observations: in (OCDE 2007), it was observed
that only UPC and PSI bounds did not envelop the PCT experimental values
(respectively for the first and second PCT), one of the reason being given to
explain this was the very narrow uncertainty band considered. This can be
found back in the results of table 3, where for both approaches, UPC and PSI
get the worst rankings with respect to calibration (exp. values out of bounds)
and the best ones with respect to informativeness (narrow uncertainty bands).

Calibration scores of GRS and NRI2: as said above, the two approaches
strongly disagree on the calibration scores of GRS and NRI2. It could be
argued that, for each approach, the respective low rank of each participant is
unfair, as both participants gives globally satisfying information. Nevertheless,
this disagreement has some explanation : the possibilistic approach indicates
that GRS poorly evaluate 17,; and T}, while the probabilistic one point out the
tendency of NRI2 nominal values to underestimate the experimental results.

Code evaluation: As the various scores are significant by themselves, results
can be used to assess the quality of a particular code (managed by a particular
user). Calibration indicates how well computed results are in accordance with
experimental values, while informativeness gives us indications as to how pre-
cise it is. By using only formal mathematics, experimental data and provided
information, these methods try to be as objective and as sound as possible in
their rankings. Both have clear interpretations and are simple to understand,
two features that we consider as advantages.
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Figure 7. Application of probabilistic aggregation
3.8  Synthesizing the sources

This section applies the aggregation operators introduced in section 2.3 to
the second PCT. Interests and defects of each operator are illustrated, as well
as how they cna help to analyze the information and the relations between
sources (i.e. the participants).

3.83.1 Probabilistic aggregation

Figure 7 shows the result of aggregating the probability distribution of the var-
ious participants. Each arithmetic mean are used with the associated weights,
except when specified so on the figure (i.e. all sources with equal weights).

As we see, grouping participants by used codes (left figure) gives poorly cal-
ibrated results. CATHARE and RELAPS5 users tend to underestimate the
experimental value, while ATHLET users tend to overestimate it. Few can be
said about the agreement of each code users.

The right figure shows how the scores given to each participant can be used to
improve the aggregated distribution, both in term of precision and of quality.
Interestingly enough, the best distributions are the one in which all sources
are taken into account with their associated scores, and the one considering
the four common participants being in the five best scored sources of each
approach. Both these two distributions are slightly narrower and more centered
around the experimental value than the two others. This shows that using the
scores in the aggregation is useful and that the two approaches can help each
other in the selection of the best sources. Here again, an eventual conflict
between sources is hardly visible. The fact that the arithmetic mean tends
to average the resulting distribution is shown in the right figure, in which
resulting distributions, although different, remain close to each others. Indeed,
we can see here that taking the average is not very discriminative,especially
in our case where information given by sources are

3.3.2  Possibilistic aggregation

Figure 8 shows the result of applying the disjunctive operator (i.e. maximum)
and the usual compromise operator (i.e. weighted arithmetic mean) to the set
of all sources (taking smaller sets of sources do not bring any really useful
extra information in these two cases).

These figures well illustrate what was explained in section 2.3.2 : the result
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Figure 8. Application of possibilistic aggregation : disjunction (left) and weighted
mean (right)

of the disjunction is quite imprecise and the arithmetic mean averages the
contribution of all participants, resulting in a smooth distribution which has
a peak around 1000 K.

Some interesting and surprising facts can be drawn from these distributions.
The fact that, in the distribution resulting from the disjunction, more peaks
are below rather than above the experimental value indicates that most sources
tends to underestimate it. This is confirmed by the distribution resulting from
the arithmetic mean, which peak is slightly below the experimental value.

The relatively high level (~ 0.75) of the left figure shows that the participants
are globally agreeing with each other, since the average conflict is low (~ 0.25).

A more surprising characteristic is the "gap" around the experimental value
that exhibits the distribution resulting from the disjunction. Indeed, the pos-
sibility degree of the experimental value is "only" around 0.8. This gap comes
from the fact that the reference value of most participant is not very close from
experimental data (this is not the case for the first PCT) and that KINS, which
reference value is the closest to the experimental value, also gives a very low
upper bound (in fact, the lowest outside of PSI, which is the only participant
having an upper bound lower than the experimental value).

Figure 9 shows the result of applying the conjunctive operator (i.e. minimum)
to various subgroups of participants. A first remark is that the eventual conflict
among each subgroup is here directly visible. For instance, we see that, con-
cerning the second PCT, the information given by both users of CATHARE
code are coherent, while the information given by ATHLET users are more
conflicting. The higher conflict shown by RELAP5 users is not surprising,
since they are more numerous.

The right figure shows that the information given by all sources concerning the
second PCT is highly conflicting (conflict ~ 0.9), and thus that the resulting
conjunction, although very precise, is judged to be highly unreliable (i.e. the
true value has an high chance to be outside it). Inversely, limiting ourselves
to the most highly scored participants (either only by possibilistic approach
or by both approaches) results in distributions that are reliable (conflict only
~ 0.2). We see that using conjunction with only the most reliable sources
results in a distribution well balanced between precision and reliability.

We can also notice that the distribution resulting from the conjunction of

ATHLET users distributions is very precise and exhibit a peak very close to
the value experimental, and thus that one should take this distribution instead

21



Figure 9. Application of possibilistic aggregation : conjunction (minimum)

of any of the others shown in figure 9. However, we must not forget that this
is because we know the exact value of the pick clad temperature . In practice,
building synthetic and reliable models concerns values and variables for which
we have scarce or no information. Had we not known the true value, we would
have given relatively poor credit to the distribution, due to its relatively low
reliability (indeed, the peak of the distribution is induced by the reference
values of GRS and NRI2, which are respectively quite larger and lower than
the true value!) .

4 Conclusion

Evaluating, synthesizing and analyzing information coming from the result
of uncertainty studies performed by computer codes is often a tedious and
difficult task. Both probability and possibility theory offer formal methods to
do so that are both well-founded and simple to use.

After a brief description, we have applied them to the result of the BEMUSE
project to show how they can be practically used. We have shown that they
can be useful to build synthetic representation of variables of interest or to
analyze the available information. In particular, it has been shown that the
scores obtained for each participant was in agreement with informal observa-
tions (thus formalizing them) and that their use in the aggregation procedure
could help to improve the final result of the aggregation. Similarities as well
as dissimilarities between the methods have been underlined. Searching the
reasons of the dissimilarities roused some interesting questions and comments
as to why some participants had different scores.

It was also shown that using probabilistic modeling and the arithmetic weighted
mean to aggregate distributions generally gives a final distribution that is more
precise and accurate. Nevertheless, it was also shown that being limited to the
arithmetic weighted mean to aggregate distributions also limits the analysis
of the available information.

Inversely, even by using the most basic aggregation operators of possibility the-
ory, we were able to derive interesting conclusions about the conflict between
sources or about their global evaluations. Moreover, one can directly measure
the reliability of a final possibility distribution (whereas such an information
is hard to extract from a probability distribution), and thus to recommend it
or not as a final synthetic representation of the variable of interest.

On an applicative side, presented methods can help to improve the assess-
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ments of computer codes by extracting useful information concerning them.
Perspectives are thus to work with experts to deepen the analysis in the most
interesting directions. Moreover, presented methods can also be applied to
input uncertainty modeling (a critical step that often requires more formaliza-
tion, as underlined in (OCDE 2007)). Let us also note that the sources involved
in the evaluation, aggregation and analysis processes can have heterogenous
nature (e.g. experts, experimental data, computer codes, ...) as long as the
information can be meaningfully modeled in a common framework.

On a methodological side, it is desirable to develop methods that allow for a
finer analysis and treatment of conflicting information. Indeed, treating the
conflict only by mean of conjunction, disjunction or arithmetic mean can lead
to frustrating results, even in the application considered here, where evalua-
tions given by all sources are quite similar. More complex aggregation meth-
ods already exist (see, for example (Delmotte 2007,Dubois and Prade 2001)),
but most of them are designed to directly build a synthetic final distribution,
without any intention of analyzing available information. This is why IRSN, in
association with University Paul Sabatier, develops new aggregation methods
designed both to analyze existing information and to build synthetic repre-
sentations (Destercke et al. 2007). These methods have been integrated to the
IRSN software for uncertainty analysis (SUNSET'), with which all computa-
tions present in this paper were performed.
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