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Abstract How to represent and handle bipolar information has recently received a
lot of attention. Being bipolar means that the information has a positive and nega-
tive part. In this paper, we consider asymmetric bipolar information (i.e. situations
where positive and negative information are unrelated and should be processed sep-
arately). We propose a framework to represent and handle it with so-called credal
sets, i.e., with convex sets of probability distributions. We also provide some illus-
trative examples.
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1 Introduction

Bipolarity consists in differentiating between positive and negative information.
This information usually concerns either evidences about the true value assumed
by an ill-known variable or preferences expressed by some agents. In this paper, we
are concerned with the first type of information. One can consider at least three dif-
ferent types of bipolarity (See [9] for more details). The first one, called symmetric
univariate, models bipolarity by the use of an univariate scale and can be represented
by the means of classical probability measures. The second one, called symmetric
bivariate, handles two separate unipolar scales (positive and negative) that refer to
the same information and are usually linked by some duality relation. Lower and
dual upper previsions [16], whose expressiveness is equivalent to credal sets, are
examples of such kind of bipolarity, as well as other models encompassed by this
representation (lower/upper probabilities, belief functions, possibility distributions).

The last type of bipolarity, coined as asymmetric or heterogeneous, is the one ad-
dressed in this paper. Such bipolarity is used when considering two unrelated kinds
of information that have to be processed in parallel: one constraining the possible
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values of a variable (negative information), the other exhibiting what is likely to be
observed (positive information). The first kind of information corresponds (for ex-
ample) to constraints, physical laws, expert opinions, while examples, observations
and measurements are instances of the second type. Note that the two kinds of in-
formation are effectively unrelated (for instance, an expert may judge as possible a
value that will never be observed), hence the need for asymmetry. Also, some psy-
chological studies [3] support the fact that the brain processes differently positive
and negative information.

Notions of bipolarity have been declined in a number of frameworks: multicrite-
ria decision making [11], conflict resolution in argumention [1], uncertainty and
preferences representation in possibility theory [9]. In this paper, we propose a
framework to model, represent and treat bipolar information when uncertainty is
modelled by convex sets of probabilities, here called credal sets [12], which con-
stitute very generic uncertainty models. The idea behind this framework is quite
simple: we propose to represent each corpus of positive and negative information as
two separate credal sets, and then to conjunctively merge them in a single credal set.
We also propose some solutions to deal with conflicting negative and positive in-
formation. After recalling the basics of credal sets, Section 2 presents our proposal.
Section 3 then provides some illustrative examples, using the popular imprecise
probabilistic representations that are p-boxes and probability intervals.

2 Handling bipolar information with credal sets

In this paper, we consider that information regarding a variable X assuming its val-
ues on a space X made of mutually exclusive elements is modelled by the means
of a credal set P . Let us denote by L (X ) the set of real-valued bounded func-
tions on X . Given a function f ∈L (X ), one can compute the lower and upper
expectations EP( f ),EP( f ) induced by P such that

EP( f ) = inf
p∈P

Ep( f ) EP( f ) = sup
p∈P

Ep( f ),

where p is a probability distribution over X and Ep( f ) the expected value of f
w.r.t. p. These two values are dual, in the sense that EP( f ) = −EP(− f ). Thanks
to this duality, one can only work with one of the two mappings (usually E).

Alternatively, one can start from a lower mapping P : K → R from a subset
K ⊆L (X ), and consider the induced credal set P(P) such that

P(P) = {p ∈ PX |(∀ f ∈K )(Ep( f )≥ P( f ))}.

with PX the set of all probability mass functions over PX . In his theory of lower
previsions [16], Walley starts from the mapping P that he calls lower prevision. He
interprets P( f ) as the supremum buying price for the uncertain reward f . A lower
prevision P is then said to avoid sure loss iff P(P) 6= /0, and to be coherent if the
lower expectation EP(P)( f ) = P( f ) coincides with P for every f ∈K (i.e., P is the
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lower envelope of P(P)). He also shows that coherent lower previsions and credal
sets have the same expressive power (in the sense that any credal can be identified
by a unique lower prevision, and vice versa). Given a credal set P , its lower (resp.
upper) probability of an event A, denoted by PP(A) (resp. PP(A)), corresponds to
the lower (resp. upper) expectation of the indicator function 1(A) of the event , that
takes value one on A and zero elsewhere. By duality, we have PP(A) = 1−PP(Ac).

Credal sets are very general uncertainty models, in the sense that they encompass
most of the other known uncertainty models, in particular both necessity measures
of possibility theory [7] and belief measures of evidence theory [13] correspond to
particular classes of lower probabilities inducing specific credal sets.

2.1 Collecting and representing bipolar information

As what is done in possibility theory [9] and evidence theory [14], we propose
to model positive and negative information by using two separate models of our
chosen framework. That is, positive information is modelled by a credal set P+,
while negative information is modelled by another credal set P−.

Negative information (P−): Negative information expresses constraints about
the value X can assume. It rules out possible values of X , considering them impos-
sible or less likely than others (expert opinions are an example of such informa-
tion). The negative credal set P− corresponding to such information will typically
be induced by a collection of expectation bounds over a set of chosen functions1

f1, . . . , fk ∈L (X ), in the form

P( fi)≤
N

∑
n=1

fi(xn)p(xn)≤ P( fi) (1)

Note that pieces of negative information are treated conjunctively, in the sense that
we consider the credal set induced by all constraints (1) at once. This means that
the more we accumulate negative information, the more precise is P−. We assume
here that P− 6= /0 (i.e., the lower prevision P given by Eq. (1) avoids sure loss).

Positive information (P+): Positive information consists in a set of M obser-
vations (experiments), coming in the form of data in our case. To obtain a positive
credal set P+ from these data, one can use a model or a learning process. For
instance, multinomial data can be associated to the well-known Imprecise Dirich-
let model [2]. Again, positive information is accumulated conjunctively, since the
more data we have, the more precise is P+. This is due to the fact that X is made
of mutually exclusive elements, meaning that observing a value more often makes
the observation of others less likely.

Note that there are cases where either positive or negative information should
be combined disjunctively instead of conjunctively. Smets [14], when combining
reasons to believe and reasons not to believe, proposes a rule that combines disjunc-

1 For example, functions corresponding to some chosen events, moments such as the mean value.
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tively negative information and conjunctively positive information. He works at a
different level from ours, since we work directly with knowledge about variables,
and not with evidences from which this knowledge is inferred. In their possibilistic
approach, Dubois and Prade [9] also work directly with knowledge about variables,
but propose to combine positive information disjunctively and negative information
conjunctively. However, their proposal concerns variables taking their values on a
conjunctive space X , i.e., the true value of X can be several values of X (in their
example, the opening hours of a museum). In that case, it appears natural to combine
disjunctively positive information, as observing a particular value does not make the
others less likely.

2.2 Merging bipolar information

Once negative and positive information have been collected, it is desirable to com-
bine them into a unique credal set. This unique credal set should be non-empty
(i.e., consistent) and more precise than the positive and negative credal sets consid-
ered separately. Given these requirements, it seems natural to merge them through
a conjunctive combination operator, namely to consider as our final information the
merged credal set P+∩− := P+∩P−, when this intersection is not empty.

When positive and negative information conflict with each other (i.e., P+∩− =
/0), it is desirable to restore consistency through some revision process. As in [9], we
propose to weaken one type of information to restore consistency. Given a parameter
ε ∈ [0,1] and a credal set P , let us first define the ε-discounted credal set Pε as

Pε = {ε pP +(1− ε)p|pP ∈P, p ∈ PX }. (2)

When dealing with bipolar knowledge, observations are usually judged more reli-
able than negative information, thus it seems more reasonable to weaken P− rather
than P+. A solution to restore consistency is to consider the minimal value ε∗ such
that P−

ε∗ is consistent with P+, i.e.,

ε
∗ = min{ε ∈ [0,1]|P−

ε∗ ∩P+ 6= /0} (3)

and then take P−
ε∗ ∩P+ as our final state of knowledge. However, as the above

revision can lead to a very precise final information state, one may consider some
value ε ≤ ε∗. The same revision process can be applied to P+. Even if this strategy
makes more sense when bipolar information represent preferences [9], it could also
be used in knowledge representation when data reliability is questionable.

2.3 Revising knowledge with new pieces of information

Another case where differentiating positive and negative information rather than
directly considering the merged representation P+∩− is useful is the case when
one receives new pieces of information to be incorporated into its knowledge. For
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example, consider new negative information, possibly provided by an additional
(reliable) expert, and modelled as a credal set P−

new. The information conveyed
by P−

new should be first added to P−, e.g., by computing P
′− = P−

new ∩P−,
before merging negative and positive information in a single representation. Note
that making this distinction can be important, as P−

new may be non-conflicting with
P− (i.e., P−

new ∩P− 6= /0), while it may be conflicting with the current positive
and negative information taken together (i.e., P−

new∩P+∩P− = /0).

3 Illustrative examples

Let us now provide some illustrative examples of the proposed way to deal with
bipolar knowledge. The examples concern two popular imprecise probabilistic mod-
els: p-boxes [10] and probability intervals [5].

3.1 p-boxes

A p-box [F ,F ] defined on the (here discretized) real line R is a pair of lower and
upper cumulative distributions describing our uncertainty about the value of a vari-
able. They consists in lower and upper probabilities given over events of the type
(−∞,x], inducing a credal set P[F ,F ] such that

P[F ,F ] = {p ∈ PR|∀x ∈ R, F(x)≤ Fp(x) = P([−∞,x])≤ F(x)},

where Fp is the cumulative distribution of p.
Positive information Following [10], it is possible to derive a p-box from a lim-

ited set of observations (x1, . . . ,xm) by using Kolmogorov-Smirnov confidence lim-
its to define bounds around the empirical distribution Fm, thus making no assumption
about the distribution form. The distribution Fm is defined as

Fm(x) =


0 for x≤ x(1)

i/n for x(i) ≤ x≤ x(i+1)
1 for x(m) ≤ x

where x(i) are the ordered sampled values. Given the samples and a confidence level
α ∈ [0,1], one can use KS confidence limits to obtain a p-box [Fm,Fm] such that

Fm = max(0,Fm−Dm(α)) and Fm = min(1,Fm +Dm(α))

We denote by P+
[F ,F ]

the credal set obtained from this positive information.

Negative information Negative information forming p-boxes usually comes
from experts evaluating some percentiles for a set of fixed values. We denote by
P−

[F ,F ]
the credal set induced by negative information.
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Merging In the particular case of p-boxes, the credal set P−∩+
[F ,F ]

= P+
[F ,F ]
∩

P−
[F ,F ]

is also induced by a p-box [F ,F ]
−∩+ such that

[F ,F ]
−∩+

= [max{F−,F+},min{F−,F+}].

In case of conflict, applying Eq. (2) does not usually result in a credal set induced
by a p-box. However, given a value ε , the p-box [F ,F ]

ε such that Fε = εF and
Fε

= εF +1− ε induces an outer approximation of Pε .
Example Assume X ∈ [0,16]. 10 samples (1; 1.5; 3; 3.5; 4; 6; 10; 11; 14; 15)

provide an empirical cumulative distribution. For a confidence level of 0.95, the
value D10(0.95) = 0.40925. An expert also provides its opinion about the probabil-
ities that the variable value is lower than values 4,8,12, in the form of the following
lower and upper bounds: [0,0.2], [0.1,0.3], [0.5,0.7]. Figure 1 displays the p-boxes
[F ,F ]

+ and [F ,F ]
− resulting from these two types of information as well as the

merging result.
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−

[F ,F ]
+
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0.6
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[F ,F ]
−∩+

Fig. 1 Illustrative example: p-boxes

3.2 probability intervals

Probability intervals [5] are a set of lower and upper probabilistic bounds given
over singletons x ∈X . They can be described by a set L = {[l(x),u(x)]|x ∈X } of
intervals. They induce a credal set PL such that

PL = {p ∈ PX |∀x ∈X , l(x)≤ p(x)≤ u(x)}.

Necessary and sufficient conditions for probability intervals to induce a non-empty
credal set are provided by [5]. They can be summarized by the conditions that,
∀x ∈X ,

u(x)+ ∑
y∈X \x

l(y)≤ 1 and l(x)+ ∑
y∈X \x

u(y)≥ 1

Positive information There are mutliple models to compute confidence bounds
on multinomial data with a limited number of samples. This can be done, for in-
stance, by considering statistical confidence intervals over multinomial data [6] or
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by using the so-called Imprecise Dirichlet Model (IDM) [2]. Here, we consider the
IDM. Let {x1, . . . ,xN} be an arbitrary indexing of elements of X , M the total num-
ber of observations, mk the number of times xk has been observed, and s a positive
real value determining the quickness of convergence of the IDM. Then, the proba-
bility intervals derived from the IDM are such that, for xk, k = 1, . . . ,N

l(xk) =
mk

m+ s
and u(xk) =

mk + s
m+ s

. (4)

We denote by L+ the obtained probability intervals, and P+
L the induced credal set.

Negative information As for p-boxes, negative information can be provided by
some experts or by a propagation through a model (e.g., a credal network [4]). We
denote by L− the obtained probability intervals, and P−

L the induced credal set.
Merging The credal set P−∩+

L = P+
L ∩P−

L is again induced by a probability
interval L+∩− which is such that, ∀x ∈X ,

l+∩−(x) = max{l+(x), l−(x),1− ∑
y∈X \x

u+(y),1− ∑
y∈X \x

u−(y)}

u+∩−(x) = min{u+(x),u−(x),1− ∑
y∈X \x

l+(y),1− ∑
y∈X \x

l−(y)}.

Also note that the result of Eq (2), when applied to probability intervals L, result in
a credal set still induced by probability intervals Lε such that, ∀x ∈X ,

lε(x) = εl(x) and uε(x) = εu(x)+1− ε

Example We consider a 3-elements space X = {x1,x2,x3} on which are defined
our probability intervals. The observed samples are such that m = 8 with m1 =
1,m2 = 7,m3 = 0. To model positive information, we use the IDM with a parameter
s = 2 and apply Eq. (4) to obtain the probability intervals L+ such that

u+(x1) = 0.3,u+(x2) = 0.9,u+(x3) = 0.2 ; l+(x1) = 0.1, l+(x2) = 0.7, l+(x3) = 0.

Negative information is assumed to be an expert opinion given as a set L− such that

u−(x1) = 0.4,u(x2)
− = 0.5,u(x3)

− = 0.3 ; l−(x1) = 0.2, l(x2)
− = 0.4, l(x3)

− = 0.

In this case, negative and positive information are conflicting (u(x2)
− ≤ l(x2)

+), as
P+

L ∩P−
L = /0. Using Eq. (3), we obtain ε∗ = 0.6 and L−

ε∗ such that

u−(x1)= 0.64,u(x2)
−= 0.7,u(x3)

−= 0.58; l−(x1)= 0.12, l(x2)
−= 0.24, l(x3)

−= 0.

Finally giving the merged structure L+∩−
ε∗

u−(x1) = 0.3,u(x2)
− = 0.7,u(x3)

− = 0.18 ; l−(x1) = 0.12, l(x2)
− = 0.7, l(x3)

− = 0

which indeed gives a very precise evaluation of the uncertainty of having X = x2.
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4 Conclusion

We have proposed a framework to handle bipolar asymmetric information in the
framework of imprecise probabilities, when this information concerns knowledge
about the value of a given variable. The proposal is illustrated with some credal sets
induced by specific probability bounds often used in practice. This work is a first
step towards the modelling and handling of bipolar information within the recent
theory of imprecise probabilities. It still has to be compared in a deeper way with
other approaches made in possibility theory and evidence theory, possibly by mak-
ing sense of the concept of guaranteed possibility [8] or of commonality function in
the context of imprecise probabilities.

Another interesting problem is how to handle bipolarity when credal sets or lower
previsions are used not to express uncertainty but imprecise preferences or utilities.
An idea would be to consider the alternative model of desirable gambles, recently
considered as a solution to multicriteria decision problems [15].
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