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Abstract

Recently, we have introduced an uncertainty represen-
tation generalising imprecise cumulative distributions
to any (pre-)ordered space as well as possibility distri-
butions: generalised p-boxes. This representation has
many attractive features, as it remains quite simple
while having an interesting interpretation in terms of
lower and upper confidence bounds over nested sets.
However, the merits this representation in various un-
certainty treatments still has to be evaluated. This is
the topic of this paper, in which handling of informa-
tion modelled by generalised p-boxes is studied, from
the point of view of elicitation, propagation, condi-
tioning and fusion.

Keywords. Generalized p-boxes, comonotonic
clouds, fusion, conditioning, propagation.

1 Introduction

When modelling and treating uncertainty in the pres-
ence of imprecision and incompleteness, it is often de-
sirable to use approaches whose complexity remains
low rather than full-fledged generic models. The ben-
efits of using the former is that their manipulation
is often easier, implying a lower computational cost.
They can also be easier to explain to non-experts, thus
being useful in elicitation and post-treatment proce-
dures. The disadvantage of such simple models is that
in some situations they may not be sufficient to repre-
sent the available knowledge nor to faithfully address
a given problem.

Recently, we have introduced an uncertainty represen-
tation generalising imprecise cumulative distributions
to any (pre-)ordered space as well as possibility dis-
tributions [4]: generalised p-boxes. We showed that
this representation is quite simple and has strong con-
nections with many other uncertainty representations,
such as random sets and the more recent clouds. Also,
the interpretation of generalised p-boxes as collection
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of nested sets with associated lower and upper con-
fidence bounds makes it a promising tool for uncer-
tainty elicitation.

However, for a given representation to be useful in un-
certainty analysis, one has to study its computational
aspects, and how complex it is to handle the represen-
tation. Such a study has already partially been done
for generalised p-boxes, whose propagation through
a model and use in optimisation procedures under
uncertainty have been considered previously [5,12].
In this paper, we recall some of these previous re-
sults and complete this study by investigating other
aspects of generalised p-boxes manipulation, such as
conditioning or merging. When possible, we link our
results with results originating from the frameworks
of probability sets [18], belief functions [17], possibil-
ity theory [7]. Since generalised p-boxes constitute a
family of Neumaier’s clouds [16], this study also pro-
vides some answers to questions regarding the manip-
ulation of these clouds (in particular with respect to
their merging).

Section [2] recalls basics about generalised p-boxes and
their links with other uncertainty representations and
frameworks. In the following sections, we explore the
problems of computing probability bounds, informa-
tion elicitation, propagation, conditioning and merg-
ing with generalised p-boxes, arriving at the conclu-
sion that their main practical interests lie in informa-
tion representation and elicitation.

2 Preliminaries

Let X be a variable taking its value on a finite space
X having N elements. First recall that two mappings
f and f’ from a finite indexed set X = {z1,...,2n}
to the real line R are said to be comonotonic if there
is a common permutation o of {1,2,..., N} such that
f(woy) = f(To@2) = = f(zov)) and f(z501)) =
[ (xo2)) =+ > f(25(ny). In other words, f and f
are comonotonic if and only if for any pair of elements



2,y € X, we have f(z) < f(y) = f'(z) < ['(y).
Note that comonotonicity is not a transitive relation.
We consider here that uncertainty about this value
is modelled by a generalised p-box [F, F|, defined as
follows:

Definition 1. A generalised p-box [F, F) over a finite
space X is a pair of comonotonic mappings F, F, F :
X —[0,1] and F : X — [0,1] from X to [0,1] such
that F is pointwise lower than F (i.e. F < F) and
there is at least one element x in X for which F(z) =
F(z) =1, these bounds ensuring that [F, F| will be a

so-called coherent lower probability.

As many applications involve variables taking values
on the real line R, we also consider generalised p-
boxes defined on this space or on one of its product
space. However, we limit ourselves to Borel sets and
to discrete generalised p-boxes (i.e., I, F only takes
a finite number of values), since other situations are
seldom encountered in practice. This allows us, by
a proper partition, to come back to the finite space
case.

A generalised p-box [F, F| induce a particular weak
order <(p,F between elements of X, such that
r <pp v if F(z) < F(y) and F(z) < F(y). In
the sequel, for the sake of clarity, we assume that
each distribution F, F take distinct values for each
elements x € X, and we consider that these elements
are indexed in agreement with the ordering induced
by the generalised p-box representing the uncertainty
about the value of X. That is, elements z1,...,xn
are indexed such that i < j — F(z;) < F(z;) and
F(x;) < F(x;). Given a generalised p-box [F, F] over
X, we define [F,F|-connected subsets and Cirr-
ordering as follows

Definition 2. Given a generalised p-box [F', F'] over
X, a subset C C X is called [F,F]-connected if it
can be expressed as a union of consecutive elements

Ty, that is
C={zpeX0<i<k<j<N}
Definition 3. Let A = {z...,2;},B =
{zy,...;xj} C X be two [F,F]-connected sets.
E[Ff]—ordering between these sets if defined as fol-
lows
1 <4

2.1 Link with sets of probability

Sets of probabilities constitute one of the most general
uncertainty model available nowadays. Their use has
been popularised by Walley [18] and studied by nu-
merous authors (see Miranda [13] for a recent review).

In this paper, we will restrict ourselves to sets of prob-
abilities Pp induced by lower probabilities. Given
a probability set P, its lower probability P on an
event A C X is defined as P(A) = infpep P(A). Up-
per probability can be defined similarly (i.e., P(A) =
suppep P(A)) and the two measures are dual, in the
sense that, for any event A C X, P(A) =1 — P(A°).

A generalised p-box [F, F| induces a particular set of
probabilities 77[ T such that

P ={P €Px|E(z;) < P({21,...,2:}) < F(x:)}
with Py the set of all probability measures over X.
When X is the real line (X = R) and when sets A;
are of the type (—oo,z;] with z; < z; when ¢ < j,
we retrieve classical p-boxes [10], which have already
been studied by many authors.

2.2 Link with random sets

Formally, a random set [2| is a mapping from a prob-
ability space to the power set of another space. In
the discrete case [17], a random set can also be con-
strued as a mass distribution m : p(X) — [0,1] s.t.
> pep(xym(E) = 1. In this case, subsets E hav-
ing a strictly positive mass are called focal elements.
We denote the set of focal sets F, and a random set
(m, F). From a random set, we can define two uncer-
tainty measures, respectively the belief and plausibil-
ity functions, which reads, for all A C X:

> m(B)

E,ENA#)

Bel(4)= Y m(E); Pi(4) =
E,ECA

The belief function quantifies our credibility in event
A, by summing all the masses that surely support
A, while the plausibility function measures the maxi-
mal confidence that can be given to event A, by sum-
ming all masses that could support A. They are dual
measures, in the sense that for all events A, we have
Bel(A) = 1 — PI(A®). The belief function can be
interpreted as a lower probability, and in this case in-
duces a credal set P, r) = {P € Px|P > Bel}, and
Bel(A) = P(A), PI(A) = P(A) for any event A C X.

A generalised p-box [F, F] also induces a particular
random set [4]. This random set can be built by the
following procedure: consider a threshold 6 € [0,1].
When a1 > 6 > «; and B;41 > 0 > §;, then, the
corresponding focal set is A;11 \ A, with weight

m(Aip1 \ 4;) = min(aiy1, Bj41) — max(ai, ;). (1)

This allows to apply results concerning random sets to
generalised p-boxes. Let us note (m, F )[ FF] the ran-

dom set induced by a generalised p-box [F, F|. The



focal elements of (m,F )ir,F) have very specific fea-
tures, which can be summarised as follows:

[F, F]-connectedness: If A ¢ FipF)> then A is

[F, F]-connected.

[F, Fl-ordered: focal sets are completely ordered
with respect to ordering Cip ) i€ for any two
distinct sets A, B € ]-"[Eﬂ,ieither ACypp Bor
B E[E)f] A.

2.3 Link with possibility distributions and
clouds

A possibility distribution [7] is a mapping 7 : X —
[0,1] from a space X to the unit interval such that
m(x) = 1 for at least one element x in X. Formally,
a possibility distribution is equivalent to the mem-
bership function of a fuzzy set. From this possibil-
ity distribution are defined two uncertainty measures,
respectively the possibility and necessity functions,
which reads, for all A C X:

IM(A) = sup7(x); N(A)=1-—TI(A°)
z€A

Given a possibility distribution 7 and a degree o €
[0, 1], the strong and regular a-cuts are subsets respec-
tively defined as the sets Fgz = { € X|m(x) > a} and
E, = {z € X|r(z) > a}. These a-cuts are nested,
since if a > (3, then E, C Eg. In the finite case, a
possibility distribution takes at most N values. Let
us denote ap = 0 < a1 < ... < ay = 1 these
N values. We denote P, the set of probabilities
Pr ={P € Px|P > N} associated to a possibility dis-
tribution 7.

Possibility distributions can also be interpreted as
particular random sets: they are equivalent to ran-
dom sets whose focal elements are nested. A belief
function (resp. a plausibility function) is a necessity
measure (resp a possibility measure) if and only if it
derives from a mass function with nested focal sets.
Such a random set is called consonant by Shafer [17].
Given a possibility distribution 7, the corresponding
random set will have the following focal elements F;
with masses m(F;),i=1,...,N:

E,={zeX|r(zx)>a;}=A @)
m(Ez) = Q5 — Q-1

Uncertainty modelled by a generalised p-box [F, F|

can also be modelled by a pair of possibility distri-

butions 7, 7p that are such that, for ¢ = 1,..., N,
(@) = F(2;) (3)

and
mr(ri) =1— F(zi-1)}, (4)

in the sense that PF 7 = = Prp N ’Pﬂ, The random
sets Mg and Mg, modehng the uncertainty of these

dlstrlbutlons are such that, for i =0,...,N — 1,
M (AS) = F(x;) — F(xi_1)
and
My (Aig1) = F(zi41) — F(x;)
And, if we denote by 0 =v9 <711 < ... < vy =1 the

M distinct values taken by F, F, then the following
random set, defined for j =1,..., M as

{ Ej ={z; € X[(rp(zi) 2 v;) A1 —mp(z:) <)}
m(Ej) =7 —vj-1-
(5)
is the same as the random set given by Eq..

The links between generalised p-boxes and possibil-
ity distributions also have strong connections with
clouds, an uncertainty representation introduced by
Neumaier [16]. A cloud [, d] is a pair of distribution
d,m from X to [0, 1] such that 6 <7, w(z) =1 for at
least one x € X and d(y) = 0 for at least one element
y € X. A cloud [r,d] induces a set of probabilities

,P[ﬂ—)g] = {P S Px|P(5a) <1l-a< P(ﬂ'a)},

with §,, = {z|0(z) > a} and 7z = {z|r(z) > o} It
can be shown that clouds whose distributions ¢, 7 are
comonotonic are equivalent to generalised p-boxes, in
the sense that they model exactly the same family
of probability sets. A so-called comonotonic cloud
[, 8] models the same uncertainty as the generalised
p-box [E,F] for which 7= = 7 and 7p = 1 — 4,
and conversely. That is, for any cloud [r,d],
have P 5 = Pr N P15, with m,1 — 9 p0551b1hty
distributions. Using the fact that clouds [m,d] and
[l — 4,1 — «] represent the same uncertainty, in the
sense that P 5y = P1_s,1-x), it is immediate that a
generalised p-box [F, F| represents the same uncer-
tainty as the generalised p-box [F,, F.], where, for
i=1,...,N

E*(CL'Z) =1 —F(.’Eifl) and F*(xl) =1- E(Z’ifl)

with the ordering g[E* Tl being the reverse of <(FF)

3 Computing probability bounds

Given a generalised pbox [F, F], there are easy ways
to compute lower and upper probabilities over any
event A C X. Let us first recall a property of the
lower probabilites induced by generalised p-boxes:

Proposition 1 (P-additivity). Let E C X be a sub-
set, and E = C1U.. .UCy with Ci,i=1,..., M maz-
imal [F, F]-connected subsets included in E and dis-
joints (i.e., C; UCj is not [F, F]-connected if i # j),



then

Using the above proposition, there is an obvious tech-
nique to compute lower and upper probabilities in-
duced by a given generalised pbox [F,F| on events
A C X. To make notations easier, we first in-
troduce an additional element zg to X, such that
F(z0) = F(x9) = 0. First, we consider events of
the type
CiU...UC;u...uCy

where C; = {z}, € X|0 < i; <k <i; < N} are [F, F|-
connected disjoint sets and x;,, x;, are respectively the
two elements of C; with lowest and highest index with
respect to ordering <ip.F) They form a field denoted
here H. For any event A C X, let us note A, the
maximal set in H such that A, C A. Then, it can be
proved [4,14] that P(A) = P(A,), and that

M
P(A) = > max{0, E(z;,) — Flz,1)}.

=1

Since H is a field (i.e. closed under complementation),
upper probabilities are easily retrieved by duality. In
particular, if A = {z, e X|[0<i<k<j<N}isa
[F, F]-connected subset, then

P(A) = F(z;) = E(xi-1). (6)

Computations of upper probabilities of more gen-
eral sets, although remaining easier than with general
models, is more complex, as upper probabilities of
generalised p-boxes do not satisfy a proposition sim-
ilar to Proposition Note that these bounds are
always coincide with the lower envelope of P[Ef}’
contrary to other conservative bounds using the re-
lations between possibility distributions and classical
p-boxes [1] or clouds and possibility distributions [16]
in their respective computations.

4 Elicitation of generalised p-boxes

To shorten notations, we adopt from now on the fol-
lowing notation: for ¢ = 1,..., N, we denote by
a; == F(z;) and 3; := F(x;) the lower and upper
probability bounds of sets {z1, ..., z;}, themselves de-
noted A;. A generalised p-box can then be described
as a set of N probabilistic constraints on nested sets

Hence, generalised p-boxes can be elicited by ask-
ing an expert to provide upper and lower uncertainty
bounds over a finite set of nested sets or intervals.
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Figure 1: Tllustration of [F, F'] and associated cloud
[77,1 — mp| of Example

There are many situations where asking information
under this form is more natural than asking for a set
of (imprecise) quantiles, as would be done for usual
p-boxes. A typical situation is when a parameter or
physical variable © can be assumed to have an un-
known but fixed value: in such cases, it appears nat-
ural to ask for confidence bounds around a best es-
timate value ©. Other situations where generalised
p-boxes may appear interesting is: (1) when working
with categorical variables for which a natural ordering
does exist and; (2) when © € R™ and when sets A; are
convex nested regions of R™, in which case generalised
p-boxes may fit in, while usual p-boxes does not.

Example 1. Given a parameter © € [a,b]|, with
[a,b] C R, an expert provides an interval A as his
best guess about the value of ©, together with upper
and lower confidence estimates whether © is in A.
This answer (which can be given, for example, as a
level on a symbolic scale) is translated into confidence
bounds a, 8 such that « < P(A) < B. This infor-
mation can be translated into a generalised p-box tak-
ing values F(x) = F(x) = 1 if x € [a,b] \ A and
F(z) = B,F(z) = a if v € A. Note that this is
a generalisation of the so-called simple support func-
tion [17], where an upper confidence bound (B) is
given in addition to a lower one. Figures[1] and[3 pro-
vides a graphic illustration of this simple generalised
p-bozx, while its induced random set is such that

m(A) = a; m([a,b]) = 8 —«a; m([a,b]\ A)=1-7

Note that, from a purely practical viewpoint, the
cloud 7, 1 —m appears as the most understandable,
at least graphically. The next example shows a more
complex example, illustrating how p-boxes can help
in uncertainty elicitation.

Example 2. Consider an expert having to evaluate a
pH in a certain situation. His opinion about the pH
value is translated as follows:

e 0.3< P(pHE€ [4.5,5.5]) < 0.6



Figure 2: Illustration of , F,, F, and associated cloud
1k, 1 — 7] of Example
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Figure 3: 7, 1—7g of generalised p-box of Example@

e 0.7< P(pH¢€ [4,6]) <0.9
e 1< P(pHE[3,7) <1

Meaning that his best guess is [4.5,5.5], but that, for
example, he is not very certain about these values and
only judges that such values are fairly plausible. He
provides another interval [4,6] for which he is this
time more assertive. He is however absolutely sure
that values are not outside [3,7]. The resulting distri-
butions mp, 1 —m of this generalised p-box is pictured
in Figure[3

5 Propagating generalised p-boxes

Let f be a function of variable X such that f(X) =Y,
with Y a variable taking values on a space ). Recall
that X can be any pre-ordered space (e.g., the dis-
cretization of a multi-dimensional continuous space).
First recall that the propagation of a random set
(m, F), and of its induced set of probabilities P, ),
comes down to computing, for every focal set A € F,
the image f(A) and to assign the same mass to this
set as to A in the original random set (m,F). In
a previous paper [5], we studied how to propagate a
generalised p-box [F, F] bearing over X’ through the
model f. We compared three different ways to prop-
agate it:

e by computing the images of each set A; and by

considering the constraints «; < P(f(A4;)) < G
for i = 1,...,N. Sets f(A;) being still nested,
these constraints again correspond to a gener-
alized p-box, inducing the random set denoted
(m, F)¢r,7)) and such that to any threshold
6 € [0, 1] corresponds the focal set

aip1 > 02> } m(f(Aip1) \ f(4)) =
Bis1>0 >3 | min(aip1, Bjr1) — max(ay, ()

Note that it is possible for f(A;41)\ f(4;) to be
the empty set.

e by computing the image of each focal elements of
(m, F) (F,F)’ ending up with the random set de-
noted (m, F) f((m, 7)) and such that to any thresh-
old 6 € [0,1] corresponds the focal set

i1 >0 > oy } m(f(Aiv1\ 45)) =
Bijt1> 02> 5; min(aiy1, Bjr1) — max(oy, ;)

e by separately propagating the focal sets of each
possibility distributions 7p, 7, ending up with
two propagated random sets (m,F)y(r,) and
(m, F) f(r) Wwhich respectively have, for i =
0,...,N — 1, mass distributions m(f(A¢)) =
ﬁi — ﬂi—l and m(f(AH_l)) = 41 — Q4. Rear-
ranging them as in the original generalised p-
box, we end up with the random set denoted
(M, F) f(np,np) and such that to any threshold
6 € [0,1] corresponds the focal set

aip1 > 02> } m(f(Ait1) \ f(A5)) =
Bijy1 >0 > f; min(a;+1, Bi+1) — max(a;, 55)

And, if we respectively denote Pp(rp x—)s Pr((m,7))
and Pf([ T the probability sets induced by the three
propagated random sets, we have the following inclu-
sion relations:

Pf([E,F]) < Pri(m,F) < ’Pf(ﬂ'ﬁ»ﬂ'?)’

with the inclusions being usually strict. The above
relations turn into equalities when f is an injective
function, however restricting oneself to such functions
is very limiting. When f is not injective, only the sec-
ond set Py((m, 7)) provides a non-approximated result.

6 Conditioning with generalised
p-boxes

Since the lower probability B[ F.F] induced by a gen-
eralised p-box is also a belief function, there are two
main ways of conditioning P, (F.F| when uncertainty on

X is modelled by a generalised p-box [F, F|: the first
is Dempster’s rule of conditioning, while the second



is Walley’s rule of conditioning. Both extend clas-
sical Bayes conditioning, but correspond to different
interpretations of conditioning [8]. In this section, we
study whether the conditional uncertainty measures
obtained by both conditionings can still be modelled
by generalised p-boxes.

6.1 Dempster conditioning

Given a random set (m,F) and a conditioning event
B = {xp,,...,xp,, }, we denote by ?[B],B[B] the con-
ditional (plausibility and belief) measures obtained by
Dempster conditioning [2]. These conditional mea-
sures, which are still belief and plausibility measures,
can be obtained by computing, for each event A C X

Pg(A) = P(;l(;)B)

where P is the plausibility measure of (m,F). Since
?[B] is a plausibility function, it has positive mass
distribution mp), which can also be built from the
initial distribution m, by transferring it to subsets of
B, computing for every subset A € X,

ZCQ{X\B} m(AUC)

, if ACB
1- ZAch m(A) na=

mp)(A) =
0, otherwise.

This means that the mass m(A) is transfered to ANB
if AN B # 0, and that the masses given to non-empty
set are then normalised (so that ), mp(A4) =
1). Now, the question is to know whether the upper
and lower measures ?[B], Pp are still induced by a
generalised p-box? The answer is yes, as indicates the
following proposition.

Proposition 2. Let B[EF] be the lower probability
induced by a generalised p-box, and B a condition-
ing event, then the lower measure B[B] obtained by
Dempster’s conditioning is induced by a generalised
p-bozx [F, F] () defined on X N B and inducing the re-
striction of weak order <(E.F of the original p-box to

elements x € B.

Proof. Since Pp is still induced by a random set, it
suffices to shows that m(p) remains a mass distribu-
tion induced by a generalised p-box, that is that focal
sets of mp) are [F, F]-connected and [F, Fl-ordered
on B with pre-ordering <iF. 7|

First, as we consider the weak ordering <(F,F] reduced
to elements of B, and as any focal set A = {x;,...,x;}
is transformed after conditioning to the focal set A N
B, thus retaining all elements in A and B, AN B is

still [F, F]-connected if the (pre)-ordering is reduced
to elements of B.

We have then to show that two distinct focal sets
A, A" remain [F, Fl-ordered after conditioning on B.
Assume A = {z;,...,z;} Cir 7 A = A{xg, ..., 21},
meaning that ¢ < k and j < [, with at least one of
the two inequalities strict. Let us consider an element
xp, € B and the sets A\ xp,,A" \ zp,. If 2, € AN A/,
then k <b; <j,and A\xzp, T A"\ xp,. I xp, € A\ A/,
then ¢ < b; < k, and either A\ zp, = A"\ ay, or
A\ xy, C A\ my,, as A, A’ are [F, F]-connected, thus
we have A\ z;,, C A’\ z;,. As we can do it repeatedly
for each element = € B, this finishes the proof.

O

The above proposition indicates that all the infor-
mation contained in conditional measures f[B], Pg
is contained in a generalised p-box. If B =
{Zp,, ..., Xy, }, with elements indexed accordingly to
<p7- and if we note B; = {xy,,... 2}, then it
is sufficient to compute F[B](Bi),B[B](Bi) for i =
1,..., M and to consider the induced generalised p-
box [F, F] (5] to model all the conditional information.
Let us consider the case (which is the most likely
to happen in practice) of conditioning on a [F, F]-
connected set B = {xp,|b1 < b; < bp}, then the
conditioned generalised p-boxes is easy to compute,
as we have, for i = 1,..., M (Using Eq. @)

— _P(BiﬂB)_ ?({xln?""xbi})
P[B](Bz) - ﬁ(B) - ﬁ({xbl’“.’be})
_ Flay,) = F(zp,—1)
a F(Z‘bM) - E(x?n—l) B F[B] (xbl)
i P(5: 0 B)

Pip(Bi) = Pip(Bi) =1 - Pp(Bf) =1— =)
_ ?i{xbﬂrl’ co 7be})
P({xbu s abe})
E(Ib1) 7E(Ib1—1)

- F(xpy,) — F(zp,-1) = Ly (oe)

6.2 Walley’s conditioning

Let us now study Walley’s conditioning [18]. Given
a set of probabilities P, its associated lower and up-
per probabilities P, P and a conditioning event B for
which P(B) > we denote by P p and P|p the
(dual) measures obtained after applying Walley’s con-
ditioning. For any event A C X, P p(A) is

1We avoid dealing with the case where there are P € P
such that P(B) = 0, which require much more subtleties (See
Miranda [13] for an introduction)
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Table 1: Gen. p-box [F, F] of Example

When lower probabilities are belief functions, P 5(A)
can be computed by the following formula:

Py(A) = P(ANB)
BT P(ANB) + P(A°NB)’

We can then ask ourselves the same question as for
Dempster’s conditioning: can the information of Pp,
which is known to still be a belief function, be totally
captured by a generalised p-box? the next example
shows that this is not the case.

Example 3. Consider the space X = {x1,x2,23, 24}
and the p-box [F, F| summarized in Table . Consider
now the conditioning event B = {x1,x9,24}. Com-
puting the conditional measure P for {z1}, {w4}
and {x1,x4}, we get

Pip({1}) =8 Pip({za}) = Y6; Bjp ({1, 24}) = Yo

Were P\p induced by a generalised p-boz, it
would satisfy Proposition and we should have
Pip({z1,24}) = Pip({z1}) + Pjp({z4}) since {z:1}

and {x4} are disjoint [F, F]-connected sets. It is not
the case here, hence P|g cannot be modelled by a gen-
eralised p-box

This example shows that generalised p-box models are
not preserved under Walley’s conditioning. However,
lower conditional probabilities remains easy to com-
pute. Also, conditional probabilities P, E B are not
used afterwards in iterated procedures (contrary to
B[B],P[B]). Indeed this type of conditioning is tai-
lored to question-answering problems of probability
sets on the basis of singular information B. If addi-
tional information C' comes up, one has to compute
B\BOC,FIBOC directly from P, P, therefore the non-
preservation of generalised p-boxes under this kind of
conditioning is not really a problem.

7 Merging generalised p-boxes

In this section, we assume that S different generalised
p-boxes [F, F],,...,[F, F|q are available to model our
uncertainty about X. They can be provided by dif-
ferent experts, sensors, or any other source of infor-
mation. In such cases, it is desirable to provide rules
to merge uncertainty models, possibly taking into ac-
count source dependencies. In the following, we say

that generalised p-boxes [F,F],,...,[F,F]g form a

comonotonic set if F;, F;,i = 1,..., S are all comono-
tonic (i.e. all orderings < 7 are the same).

7.1 Idempotent merging rules

When dependency between sources are not well
known, it is usual to use merging rules satisfy-
ing the property of idempotence, as this ensures
that the merging of two identical information items
[F, F,,[F, F], will result in the same representation
(thus not adding unwarranted information). Given
the strong connections between generalised p-boxes,
p-boxes and possibility distributions, it appears nat-
ural to define idempotent merging rules as follows:

Conjunction: we define the conjunctively merging
[F, F| of generalised p-boxes, for any x € & as the
following pair of mappings
F(z) = max F;(x) and Fr(z) = min F;(z). (7)
i=1,8 i=1,8
We say that the conjunction is empty when F(z) >
Fn(z) for at least one x € X

Disjunction: we define the conjunctively merging

[F, }1] y of generalised p-boxes as the pair of mappings
Fr, Fr such that, for any x € X

F,(x) = F,(z) and F(z) = maéfi(ac). (8)

in
i=1,9 i=1,

Convex combination: Let A;,...,Ag be non neg-
ative weights summing up to one (Ziszl i = 1)
and associated to sources. We then define the arith-

metic weighted mean [F, F]5, as the pair of mappings
F's., F's; such that, for any z € X

5
NE(z) and Fx(z) = Z)\Zfl(ac) (9)

i=1 i=1

M

Fy(z) =

One can check that, when generalised p-boxes are re-
stricted to usual p-boxes, idempotent rules proposed
by Ferson’s et al. [11] are retrieved. The merging
results [F, F| ,, [F, Fly and [F, F|, are not guaran-
teed to be generalised p-boxes (as comonotonicity can
be lost), but they can still be interpreted as clouds
(thus offering a possible answer as how to merge
clouds [16]). However, when generalised p-boxes form
a comonotonic set, the fact that the maximum, mini-
mum and mean operators are non-decreasing in their
arguments ensures that the result will still be a gen-
eralised p-box with the same induced ordering.

It is also useful to notice that the possibility distri-

bution pairs induced by [F, F] , [F, F|, and [F, Fs,
are such that

] WEU = maXx;=1,8 7TEi and qu = max;=1,8 Wfi,



® Tp = mMini—1 57F, and TR, = min;—1,s TF, s
= Zi:l,s NTE,,

The proposed idempotent merging rules are there-
fore equivalent to apply twice the classical idempotent
rules of possibility theory (those rules are retrieved
when p-boxes are reduced to single possibility distri-
butions).

® Try =2 1,5 AiE, and Tp,

With regard to sets of probabilities, these merging
rules can be used as approximations of exact com-
putations. Let [r7 ,1 — 7p |, [75 ,1 — 7p_ | de-
note the clouds resulting from disjunctions, conjunc-
tions of generalised p-boxes [F, F],,...,[F, F|q, and
P[Evf]u’P[Ef]m their induced sets of probabilities
(possibly empty). The following proposition holds:

Proposition 3. Let P[F 7, .,’P[F Pl be the sets

of probabilities induced by [F, F),,...,[F,F|g. Then,
the following inclusions hold

S

Pirr, © ﬂ
-

P, 2 U Prem,
=1

wih the last inclusion turning into an equality when
generalised p-boxes form a comonotonic set.

Proof. First recall that, if m;, 7 are two possibility
distributions, min{m, 7o}, (max{m,m2}) their min-
imum (maximum) and Pi, P2, Pminy, (Pmax,,) their
induced sets of probabilities, then Pmin,, € P1 N Po
(Pmaxlz =P UPs).

Using the relation between clouds and sets of proba-
bilities, we have

P, =P

TrfmmPﬂ'Em7
and since 7wp = =

min;—1 5 75, , we have

é(meD

and since Pr. NPrp = Pp, FF) this shows the inclu-
sion relation for the conJunctlon If we consider now
the case where generalised p-boxes form a comono-
tonic set, then it means that all constraints bear on
the same events A;, ¢ = 1,..., N and are of the kind
a; ; < P(A4;) < B;;, where «; 5, 5 ; are the upper and
lower bounds of p-box [F, F]j for the set A;. Thus,
the intersection ﬁf:ﬂ?[ £, 7, 15 induced by the set of
following constraints:

minizl,s ﬂ-Ei and an =

) (Pmini=1,s TF, N 7)mim=1,s 71'51.)

< P(A;) <
max a; < P(4;) < mi

and these constraints exactly describe the generalised
p-box [F, F].

To show the second inclusion relation, it is sufficient
to note that, foranyi =1,...,5 U;q:l(PﬁEi NPr_ ) C

(U;'Szlp‘frgi) n (Uiszl’Pﬂ'fi)' O

In particular, Proposition [J| indicates that the con-
junction of sets of probabilities induced by usual p-
boxes or of sets of comonotonic possibility distribu-
tions is induced by the result of the proposed merging
rule.

The conjunctive and disjunctive merging rules can
also be interpreted in terms of random sets, as the
next proposition indicates. It shows that merging
rules can be associated to a random set merging ap-
plying a commensuration process [9], with an hypoth-
esis of level-wise merging (i.e. correlation between the
sources).

Proposition 4. Consider the set {y1,...,vam}
Ule {Fi(z),F;(z)|x € X} of distinct values taken by
the generalised p-box [F,F],, i = 1,...,5, and in-
dexed such that 0 =y <71 < ... <ym = 1. Assume
[F,F) and [F,F| are generalised p-bozes, then they
respectively induce the random sets (m,F)q,(m,F)
having, for j =1,..., M, the following focal elements:

ma (N Big) =75 — -1 (10)
and

mu(UL1 Bij) =75 = V-1, (11)
with B j = {z € X|(r5,(z) > 7)) A (1 — 7F,(z) <75)}
the set obtained by Eq. for [E, F),.

Proof. Again, we provide only the proof for [F, F] .
If we consider [F, F] , and the induced pair of pos-
sibility distributions TE,, TF,, We have that the in-
duced random (m,F) have, for j = 1,..., M, masses
m(E;) = y; —yj—1 assigned to focal sets such that

Ej = {z|rg (x) >y A (1 —7r (2) <)}

= {m| max 75 () > v; A(1— max 7p (2) < 'yj)}
i=1,5 1 i=1,5

)

> 95} NUizs {zlme, > 1 -7}

> i /\7TF > 1 —’}/]} = U (Ez,])
i=1,8
Which ends the proof. The fourth equality follow-
ing from known relation between possibilistic disjunc-
tion with maximum rule and random sets combination
(namely, that the maximum of a set of possibility dis-
tributions correspond to take level-wise union of their
a-cuts as a result [9]). O

= {xl max 7z, () = %} n {wl max T, > 1 — %}
= U,‘Zl S {Jilﬂ'f (.’13

U {x|7rF

i=1,5



Note that when [F, F], and [F, F]  are only clouds,
the random sets of the proposition only gives inner
approximations [4]. Working out a relation between
[F, F]y, and the convex mixture of sets of probabil-
ities (ie. Py = {X0, \MP|P € Piem),t ) or of
random sets (the two procedure inducing/the same
set of probabilities) seems harder, except when gen-
eralised p-boxes are globally comonotonic, in which
case [F, F|y can be seen as an approximation of the
result that is exact on sets A; (due to the fact that

P (A) = Y0 NPy 7y (Ad) = iy MiF ().

8 Other merging rules

In cases where the independence of sources or some
dependence structures between them can be assumed,
the property of idempotence can be dropped, and it
is desirable to use merging rules reflecting the known
(in)dependence structure. We are not aware of merg-
ing rules exploiting such information in settings em-
phasising the use of probability sets, but such rules do
exist in the settings of possibility theory and of ran-
dom sets. FExploiting the links between generalised
p-boxes and possibility distributions, we can there-
fore propose an extension of the idempotent merging
rules proposed in Section such that conjunctive
and disjunctive rules respectively become

Fr(z) = Lim1sF(2); Fr(z) = Tiz1sFi(z). (12)
F(z) = TizisF(2); Fi(z) = Lizi sFi(x). (13)

with T a triangular norm and | its dual triangu-
lar conorm, possibly restricted to associative copu-
las [15]E| if a probabilistic interpretation is to be con-
served. A t-morm is a function T : [0,1]* — [0,1]
that is associative, commutative, non-decreasing in
each variable and has 1 as identity element (i.e.,
T(z,1) = ). The dual t-conorm of a t-norm is such
that L(z,y) = 1—T(1—z, 1—y) for any (z,y) € [0,1]".
For instance, if all sources can be judged independent,
it makes sense to use the product t-norm and its asso-
ciated t-conorm 1 (z,y) = x4y —x-y. Note that this
rule is still equivalent to a pair-wise application of the
t-norm to possibility distributions 7 ,7p,, and that
inclusions of Proposition [3] remain valid and are, in
this case, always strict.

As generalised p-boxes constitute particular instances
of random sets, it is also possible to merge their in-
duced random sets by families of rules used in this
setting [3]|. For example, one can apply unnormalised
Dempster’s rule if sources can be judged independent.
Given two random sets mq, mo on X, the random set

2t-norms T satisfying T(c,d)—T(c,b)—T(a,d)+T(a,b) >0
for any (a,b,c,d) € [0, l]4 such that a < ¢, b<d

B | AnB | A°NB | B
Be|| AnB¢ | A°NB°| B¢
X A B X

Table 2: Dempster’s rule allocation for Example [4]

mqo resulting from unnormalised Dempster’s rule si
such that, for any A C X,

mia(A) = > my(B)-my(C).

BNC=A

B,CCX
The disjunctive rule is obtained by replacing N with
U in the formula. As for possibility distributions [9],
applying this rule to random sets induced by a set of
generalised p-boxes does not, in general, result in a
random set induced by a generalised p-box as indi-
cates the next example.

Example 4. Let us consider two generalised p-boxes
as in Example such that the first source provide
bounds oy, 31 on set A and the second source provide
bounds as, B2 for a distinct set B, such that BN A #
{A,B,0}. Table[q summarises which sets receive a
positive mass for the conjunctive allocation.

Since both ANB, ANB¢, A°NB°, AN B¢ are all dis-
joint focal sets strictly included in X, the result is not
a generalised p-box, since there are no weak order on
elements of X such that all focal sets are connected
and ordered. The same argument holds for the dis-
junctive counterpart of Dempster’s rule.

9 Summary and Conclusions

The results of this paper indicate that generalised
p-boxes are not very stable uncertainty representa-
tions, in the sense that most information treatments
(e.g. propagation, conditioning), once applied to gen-
eralised p-boxes, result in representations that are no
longer generalised p-boxes. However, even in such
situations, using these representations can lighten the
computational burden (e.g., by using quick approxi-
mation). There are also peculiar situations (i.e. prop-
agation through injective functions, dempsterian con-
ditioning, merging of comonotonic sets of generalised
p-boxes) where the final result is still a generalised
p-box.

Consequently, processing information solely by the
means of generalised p-boxes appears of poor interest
when one want to make exact computations, as their
expressive power remains limited (they can be, how-
ever, useful to provide quick approximations). It thus
appears that the main interest of generalised p-boxes



lies in the elicitation and post-treatements of uncer-
tainty, as giving lower and upper confidence bounds
to a set of nested sets is a quite natural way to charac-
terise and to represent information tainted with un-
certainty. Recent works on comonotonic clouds [12]
also show that generalised p-boxes (which have an ex-
pressive power equivalent to comonotonic clouds, as
they can model the same sets of probabilities) are con-
venient for modelling uncertainty in high-dimensional
spaces and can make optimisation easier to achieve
(by using the convexity of confidence regions).

Concerning future works, there are still a number of
practical results concerning usual p-boxes and pos-
sibility distributions whose extensions to generalised
p-boxes need to be explored. Among these results
are the so-called fuzzy 6] and probabilistic [19] arith-
metic, respectively allowing easy propagation of fuzzy
sets and usual p-boxes under different (in)dependence
assumptions.
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