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Abstract There are many ways to extend the classical expected utility decision rule
to the case where uncertainty is described by (convex) probability sets. In this paper,
we propose a simple new decision rule based on the pair-wise comparison of lower
and upper expected bounds. We compare this rule to other rules proposed in the
literature, showing that this new rule is both precise, computationally tractable and
can help to boost the computation of other, more computationally demanding rules.
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1 Introduction

We are concerned here with the problem of making a decision d, which may be
taken from a set of N available decisions D = {d1, . . . ,dN}. Usually, this decision is
not chosen arbitrarily, i.e., it should be the best possible in the current situation.

In our case, the benefits that an agent would gain by taking decision di depend
on a variable X and the knowledge we have about its value. We assume here that
the true value of X is uncertain, that it takes its value on a finite domain X and
that the benefit (or gain, reward) of choosing di can be modelled by a real-valued
and bounded utility function Ui : X → R, with Ui(x) the gain of choosing action di
when x is the value of X . The problem of decision making is then to select, based
on this information, the decisions that are optimal, i.e. are likely to gives the best
possible gain.

When uncertainty on X is (or can be) modelled by a probability distribution
p : X → [0,1], many authors (for example De Finetti [2]) have argued that the
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optimal decision d ∈ D should be the one maximising the expected utility, i.e.,
dEp = argmaxdi∈D Ep(Ui) = ∑x∈X Ui(x)p(x). Thus, selecting the optimal decision
in the sense of expected utility comes down to considering the complete (pre-)order
induced by expected utility, here denoted by ≤E, over decisions in D (di ≤E d j if
Ep(Ui) ≤ Ep(U j)), and to choose the decision which is not dominated by others
(Given a partial order ≤ on D , we say that d dominates d′ if d′ ≤ d). In the sequel,
we will say that a decision d is optimal w.r.t. an order ≤, or a decision rule, if it is
non-dominated in the order induced by this decision rule.

However, it may happen that our uncertainty about the value of X cannot be mod-
elled by a single probability, for the reason that not enough information is available
to identify the probability p(x) of every element x ∈ X . In such a case, convex
sets of probabilities, here called credal sets [5] (which are formally equivalent to
coherent lower previsions [9]), have been proposed as an uncertainty representation
allowing us to model information states going from full ignorance to precise proba-
bilities, thus coping with insufficiencies in our information. Formally, they encom-
pass most of the uncertainty representations that integrate the notion of imprecision
(e.g., belief functions, possibility distributions, . . . ).

To select optimal decisions in this context, it is necessary to extend the expected
utility criterion, as the expected utility E(U) is no longer precise and becomes a
bounded interval [E(U),E(U)]. In the past decades, several such extensions, based
on the evaluations of expectation bounds rather than of precise expected values,
have been proposed (see Troffaes [6] for a concise and recent review). Roughly
speaking, two kinds of generalisations are possible: either using a combination of
the lower and upper expectation bounds to induce a complete (pre-)order between
decisions, reaching a unique optimal decision, or relaxing the need of a complete
order and extending expected utility criterion to obtain a partial (pre-)order between
decisions. In this latter cases, there may be several optimal decisions, the inability
to select between them reflecting the imprecision in our information.

In this paper, we propose and explore a new decision rule of the latter kind,
based on a pair-wise comparison of lower and upper expectation bounds. This rule,
which has not been studied before in the framework of imprecise probabilities (to
our knowledge), is quite simple and computationally tractable. Section 2 recalls the
imprecise probabilistic framework as well as the existing decision rules. We then
present in Section 3 the new rule and compare it to existing rules. We will show
that this rule is (surprisingly) precise when compared to other rules inducing partial
pre-orders between decisions.

2 Imprecise probabilities and decision rules

We consider that our information and uncertainty regarding the value of a variable
X is modelled by a credal set P . Given a function Ui : X → R over the space X ,
the lower and upper expectations EP(Ui),EP(Ui) of Ui are such that
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EP(Ui) = inf
p∈P

Ep(Ui) EP(Ui) = sup
p∈P

Ep(Ui)

In Walley’s [9] behavioural interpretation of imprecise probabilities, EP(Ui) is in-
terpreted as the maximum buying price an agent would be ready to pay for Ui,
associated to decision di. Conversely, EP(Ui) is interpreted as the minimum selling
price an agent would be ready to receive for Ui. These two expectation bounds are
dual, in the sense that, for any real-valued bounded function f over X , we have
E( f ) =−E(− f ).

When proposing a decision rule based on lower and upper expectations E,E, a
basic requirement is that this decision rule should reduce to the classical expected
utility rule when P reduces to a single probability distribution. Still, there are many
ways to do so, providing D with a complete or a partial (pre-)order. In the former
case, there is a unique optimal non-dominated decision, while in the latter there may
be a set of such non-dominated decisions. We will review the most commonly used
approaches, dividing them according to the kind of order they induce on D .

Example 1. In order to illustrate our purpose, let us consider the same example as
Troffaes [6]. Consider a coin that can either fall on head (H) or tails (T ), thus X =
{H,T}, with our uncertainty given as p(H) ∈ [0.28;0.7] and p(T ) ∈ [0.3;0.72].
Different decisions and their pay-off in case of landing on Heads or Tails are sum-
marized in Table 1, together with the lower and upper expectations reached by each
decision.

D Ui H T E E
d1 U1 4 0 1.12 2.8
d2 U2 0 4 1.2 2.88
d3 → U3 3 2 2.28 2.7
d4 U4 1/2 3 1.25 2.3
d5 U5 47/20 47/20 2.35 2.35
d6 U6 41/10 −3/10 0.932 2.78

Table 1 Example 1 possible decisions and expectation bounds.

2.1 Rules inducing a complete order

Let us start with the rules pointing to a unique optimal decision.
Γ -maximin The Γ -maximin rule [3], denoted by ≤E, consists in replacing the

expected value with the lower expectation. The optimal decision under this rule is
such that

d≤E = arg max
di∈D

EP(Ui).

This rule correspond to a pessimistic attitude, since it consists in maximizing the
worst possible expected gain. In example 1, d≤E = d5.
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Γ -maximax The optimistic version of the Γ -maximin, denoted by ≤E and con-
sisting in selecting as optimal the decision that maximises the expected outcome is
such that

d≤E
= arg max

di∈D
EP(Ui).

In example 1, d≤E
= d2.

Hurcwitz Criterion Hurcwitz criterion in imprecise probabilities [4], denoted
here by ≤α , consists in choosing a so-called pessimism index α ∈ [0,1], and to
induce an order where the behaviour of the decision maker range from fully pes-
simistic (α = 1) to fully optimistic (α = 0). Once a pessimistic index α has been
chosen, Hurwictz rule is such that di ≤α d j whenever αEP(Ui)+(1−α)EP(Ui)≤
αEP(U j)+(1−α)EP(U j), and the optimal decision d≤α

under this rule is

d≤α
= arg max

di∈D
αEP(Ui)+(1−α)EP(Ui).

Γ -maximin and -maximax are respectively retrieved when α = 1 and α = 0. In
Example 1, the set of optimal decisions d≤α

that can be reached by different values
of α is {d2,d3,d5}

Note that determining optimal decisions for these three criteria requires N com-
parisons and at most 2N computations of expectation bounds.

2.2 Rules inducing a partial order

The other alternative when extending expected utility criterion is to let drop off the
assumption that the order on the decisions has to be complete. That is, to allow the
order to be partial and to possibly induce a set of optimal decisions rather than a
single one. Three rules following this way have been proposed up to now.

Interval dominance A first natural extension to the comparison of precise ex-
pectations to the case of interval-valued expectations is the interval dominance order
≤I such that di ≤I d j if and only if EP(Ui) ≤ EP(U j). That is, d j dominates di
if the expected gain of d j is at least as great as the one of di. The resulting set of
non-dominated (or optimal) decisions is denoted by DI and is such that

DI = {d ∈D | 6 ∃d′ ∈D ,d ≤I d′}.

Computing DI requires the computation of 2N expectations and 2N comparisons.
For Example 1, we have DI = {d1,d2,d3,d5,d6}. As we can see, this rule has the
advantage to be computationally efficient, but is also very imprecise.

Maximality When expectations are precise, we have di≥E d j whenever Ep(Ui)≥
Ep(U j) or, equivalently, whenever Ep(Ui−U j)≥ 0. The notion of maximality con-
sists in extending this notion by inducing a pre-order≥M such that di >M d j when-
ever EP(Ui−U j)> 0. In Walley’s interpretation, EP(Ui−U j)> 0 means that we
are ready to pay a positive price to exchange Ui for U j, hence that decision di is



A new decision rule for imprecise probabilities 5

preferred to decision d j. The resulting set of optimal decisions DM is such that

DM = {d ∈D | 6 ∃d′ ∈D ,d ≤M d′}

Computing DM requires the computation of N2−N lower expectations and N2−N
comparisons. For Example 1, we have DM = {d1,d2,d3,d5}.

E-admissibility Robustifying the expected utility criterion when uncertainty is
modelled by sets of probabilities can simply be done by selecting as optimal those
decisions that are optimal w.r.t. classical expected utility for at least one probability
measure of P . In this case, the set of optimal decision DE is such that

DE = {d ∈D |∃p ∈P s.t. dEp = d}

Utkin and Augustin [7] have proposed algorithms that allow computing DE by
solving N linear programs whose complexity is slightly higher than the ones usu-
ally associated to the computation of a lower expectation. For Example 1, we have
DE = {d1,d2,d3}. Both E-admissibility and Maximality give more precise state-
ments than Interval dominance, but their computational burden is also higher (hence,
they are more difficult to use in complex problems).

3 The new decision rule

The rules presented in the previous section consist, for most of them, in comparing
numeric values (expectation bounds) to determine which decisions are dominated
by others and are therefore non-optimal. Other ways to order interval-valued num-
bers can therefore be considered and studied as potential decision rules. One such
ordering that has not be studied in imprecise probability theory (as far as we know)
is the one where an interval [a,b] is considered as lower than [c,d] if a≤ c and b≤ d.
This comes down to a pair-wise comparison of the interval bounds.

Using this ordering, we therefore propose a new decision rule, that we call Inter-
val bound dominance (I B-dominance for short), denoted by≤I B , and defined as
follows

Definition 1 (Interval bound dominance). Given a credal set P and two deci-
sions di,d j ∈ D , di ≤I B d j whenever EP(Ui) ≤ EP(Ui) and EP(Ui) ≤ EP(Ui)
(di <I B d j when at least one of the two inequalities is strict).

Note that, as for the rules of Section 2.2, the order ≤I B is partial and induces
a set of optimal decisions. The set of optimal decisions DI B resulting from this
decision rule is such that

DI B = {d ∈D | 6 ∃d′ ∈D ,d ≤I B d′}

In Example 1, we have DI B = {d2,d3,d5}, which is different from any set obtained
with other decision rules of Section 2.2.
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Computing the set DI B requires the computation of 2N expectation bounds (the
same as for computing DI ) and 2N comparisons at most. It is therefore as compu-
tationally efficient as the interval dominance criterion, and can be more precise (see
Example 1). Actually, we will show that it is always at least as precise.

Let us now study the relation of this new decision rule with previous ones. First,
we will show that the I B decision rule is coherent with the rules inducing a com-
plete order between decisions, before processing to the rules inducing a partial order.

3.1 Relations with complete ordering rules

Let us first start with Γ -maximin and Γ -maximax. As indicates the next proposition,
we can easily show that the I B decision rule considers as optimal the decisions
selected by these two rules.

Proposition 1. The two optimal decisions d≤E and d≤E
in the sense of Γ -maximin

and Γ -maximax are also optimal in the sense of I B dominance, that is

{d≤E ,d≤E
} ⊆DI B

Proof. We will only prove d≤E ∈DI B , proof for d≤E
being similar. Let d≤E = di,

as by definition there are no decision d j ∈ D such that E(Ui) < E(U j), this means
that there are no decision that I B-dominates di, hence d≤E ∈DI B .

The next proposition shows that I B decision rule can also be seen as a robusti-
fication of Hurwictz criterion.

Proposition 2. Let di,d j be two different decisions. Then, di ≤I B d j if and only if
di ≤α d j for every α ∈ [0,1]

Proof. Let us first prove the ”if” part. Since di ≤α d j for every α , if we consider
α = 1 and α = 0 we respectively have that EP(Ui) ≤1 EP(U j) and EP(Ui) ≤0
EP(U j). These two inequalities leading to di ≤I B d j.

Let us now concentrate on the ”only if” part. di ≤I B d j means that EP(Ui) ≤
EP(U j) and EP(Ui) ≤ EP(U j) (these two inequalities covering the case where
α = 0 and α = 1). Hence, for any value α ∈ (0,1), we also have αEP(Ui) ≤
αEP(U j) and (1− α)EP(Ui) ≤ (1− α)EP(U j). Summing left and right-hand
sides of each equations, we have αEP(Ui)+ (1−α)EP(Ui) ≤ αEP(U j)+ (1−
α)EP(U j), hence di ≤I B d j implies di ≤α d j for any α

The I B decision rule can thus be seen as a decision rule where a decision dom-
inates another if and only if it dominates it under all different pessimistic/optimistic
attitudes, thus safeguarding the decision maker against the need to commit into such
an attitude in a first analysis. Actually, it looks possible that DI B contains all ac-
tions that are optimal in the Hurcwitz sense for some value of α , as is the case in the
example. Let us now study the relations with the rules inducing a partial ordering.
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3.2 Relations with partial ordering rules

The next proposition indicates that Interval dominance implies I B dominance.

Proposition 3. Given a decision set D and a credal set P , we have DI B ⊆ DB ,
with the inclusion being usually strict.

Proof. We need to show that if a decision di is not optimal w.r.t. ≤I , then it is
also not optimal w.r.t. ≤I B . If di is not optimal w.r.t. ≤I , it means that there is
a decision d j such that di <I d j, hence that EP(Ui) < EP(U j). Since EP(Ui) ≤
EP(Ui)< EP(U j)≤ EP(U j), this implies di <I B d j

The next result concerns the relation of I B decision rule with maximality.

Proposition 4. Given a decision set D and a credal set P , we have DI B ⊆DM ,
with the inclusion being usually strict.

Proof. Let us show that if a decision di is not optimal w.r.t. ≤M , then it will also
be non-optimal w.r.t. ≤I B . If di 6∈ DM , then it means ∃d j s.t. E(U j −Ui) > 0.
Using the properties of lower expectations (see Walley [9, Ch. 2]), we have E(U j)+
E(−Ui)≥E(U j−Ui). Using this inequality and the duality between lower and upper
expectations, we have E(U j)+E(−Ui) =E(U j)−E(Ui)> 0, hence E(U j)>E(Ui).
Similarly, we have that E(U j)+E(−Ui)≥E(U j−Ui). using the same reasoning and
duality, we have E(U j)−E(Ui)> 0, meaning that E(U j)>E(Ui). Hence, di <M d j
implies di <I B d j, and di 6∈DI B

This proposition tells us, among other things, that I B-dominance can be used
as a quick estimate of an inner approximation of the set DM , while interval dom-
inance can be used to estimate an outer approximation of this set. This means that
both interval dominance and I B-dominance, which present a low computational
complexity when compared to maximility, can be used to reduce drastically the
number of required computations to evaluate DM . In the example, only two deci-
sions that are in DI but not in DI B would need to be verified: {d1,d6}.

Concerning E-admissibility and I B-dominance, it is easy to see, from the ex-
ample, that none imply the other, since the set of optimal actions under these rules
only overlap (and their union is the set DM ). Figure 1 recalls [6] and summarises
the implications relation between the different rules, integrating I B-dominance
into it. Roughly speaking, the figure goes from the most precise decision rules (left)
to the most imprecise (right).

4 Conclusion

In this paper, we have proposed a simple new decision rule for imprecise prob-
abilities, based on expectation bound pair-wise comparison, and have studied its
relation with other existing decision rules. The interest of this rule is that it remains
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Γ -maximax

Γ -maximin

Hurcwitz

E-admissibility

I B−dominance

Maximality Interval dominance

Fig. 1 Relations between decision rules: A→ B means that a decision optimal in the sense of A is
also optimal in the sense of B

in the spirit of an imprecise probabilistic approach, since less information will lead
to a larger set of optimal decisions, but is both computationally tractable and less
conservative than most other rules. Another interesting fact is that this rule implies
maximality (i.e. I B optimal decisions are also maximal). Therefore, if not used
for itself, the I B decision rule can boost the computational tractability of DM ,
using it in conjunction with interval dominance to reduce the number of decision
whose optimality under maximality criterion must be checked.

The next step is to evaluate to which extent this decision rule can improve the
results of some tasks such as classification [10], and if it is consistent with a dynamic
programming approach when dynamics enters the picture [1].
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