
Building an interpretable fuzzy rule base from data
using Orthogonal Least Squares

Application to a depollution problem

Sébastien Desterckeb, Serge Guillaumea,
Brigitte Charnomordicb,∗,

aUmr Itap, Cemagref, BP 5095, 34196 Montpellier Cedex, France
bUmr ASB, INRA, 2 place Viala, 34060 Montpellier Cedex, France

Abstract

In many fields where human understanding plays a crucial role, such as bioprocesses, the
capacity of extracting knowledge from data is of critical importance. Within this frame-
work, fuzzy learning methods, if properly used, can greatlyhelp human experts. Amongst
these methods, the aim of orthogonal transformations, which have been proven to be mathe-
matically robust, is to build rules from a set of training data and to select the most important
ones by linear regression or rank revealing techniques. TheOLS algorithm is a good repre-
sentative of those methods. However, it was originally designed so that it only cared about
numerical performance. Thus, we propose some modificationsof the original method to
take interpretability into account. After recalling the original algorithm, this paper presents
the changes made to the original method, then discusses someresults obtained from bench-
mark problems. Finally, the algorithm is applied to a real-world fault detection depollution
problem.

Key words: Learning, rule induction, fuzzy logic, interpretability,OLS, orthogonal
transformations, depollution, fault detection

1 Introduction

Fuzzy learning methods, unlike “black-box” models such as neural networks, are
likely to give interpretable results, provided that some constraints are respected.

∗ Corresponding author.
Email address:bch@ensam.inra.fr (Brigitte Charnomordic).

Preprint submitted to Fuzzy Sets and Systems 20 August 2008

While this ability is somewhat meaningless in some applications such as stock mar-
ket prediction, it becomes essential when human experts want to gain insight into a
complex problem (e.g. industrial [17] and biological [28] processes, climate evolu-
tion [13]).

These considerations explain why interpretability issuesin Fuzzy Modeling have
become an important research topic, as shown in recent literature [2]. Even so, the
meaning given to interpretability in Fuzzy Modeling is not always the same. By
interpretability, some authors mean mathematical interpretability, as in [1] where
a structure is developed in Takagi-Sugeno systems, that leads to the interpretation
of every consequent polynomial as a Taylor series expansionabout the rule center.
Others mean linguistic interpretability, as in [11], [10].The present paper is focused
on the latter approach. Commonly admitted requirements forinterpretability are a
small number of consistent membership functions and a reasonable number of rules
in the fuzzy system.

Orthogonal transformation methods provide a set of tools for building rules from
data and selecting a limited subset of rules. Those methods were originally designed
for linear optimization, but subject to some conditions they can be used in fuzzy
models. For instance, a zero order Takagi Sugeno model can bewritten as a set of
r fuzzy rules, theqth rule being:

Rq : if x1 is Aq
1 andx2 is Aq

2 and . . . theny = θq (1)

whereAq
1, A

q
2 . . . are the fuzzy sets associated to thex1, x2, . . . variables for that

given rule, andθq is the corresponding crisp rule conclusion.

Let (x, y) beN input-output pairs of a data set, wherex ∈ R
p andy ∈ R. For the

ith pair, the above Takagi Sugeno model output is calculated as follows:

ŷi =

r∑
q=1

θq

(
p∧

j=1

µA
q

j
(xi

j)

)

r∑
q=1

(
p∧

j=1

µA
q

j
(xi

j)

) (2)

In equation 2,
∧

is the conjunction operator used to combine elements in the rule
premise,µA

q

j
(xi

j) represents, within theqth rule, the membership function value

for xi
j , j = 1 . . . p.

Let us introduce the rule firing strengthwq(xi) =
p∧

j=1

µA
q

j
(xi

j). Thus equation 2 can

2

be rewritten as:

ŷi =

r∑
q=1

θqwq(xi)

r∑
q=1

wq(xi)
(3)

Once the fuzzy partitions have been set, and provided a givendata set, thewq(xi)
can be computed for allxi in the data set. Then equation 3 allows to reformulate the
fuzzy model as a linear regression problem, written in matrix form as:y = Pθ+E.
In that matrix form, y is the sample output vector, P is the firing strength matrix,
θ is the rule consequent vector and E is an error term. Orthogonal transformation
methods can then be used to determine theθq to be kept, and to assign them optimal
values in order to design a zero order Takagi Sugeno model from the data set.

A thorough review of the use of orthogonal transformation methods (SVD, QR,
OLS) to select fuzzy rules can be found in [29]. They can be divided into two main
families: the methods that select rules using theP matrix decomposition only, and
others that also use the outputy to do a best fit. The first family of methods (rank
revealing techniques) is particularly interesting when the input fuzzy partitions in-
clude redundant or quasi redundant fuzzy sets. The orthogonal least squares (OLS)
technique belongs to the second family and allows a rule selection based on the
rule respective contribution to the output inertia or variance. With respect to this
criterion, it gives a good summary of the system to be modeled, which explains
why it has been widely used in Statistics, and also why it is particularly suited for
rule induction, as shown for instance in [26].

The aim of the present paper is to establish, by using the OLS method as an exam-
ple, that orthogonal transformation results can be made interpretable, without suf-
fering too much loss of accuracy. This is achieved by building interpretable fuzzy
partitions and by reducing the number of rule conclusions. This turns orthogonal
transformations into useful tools for modeling regressionproblems and extracting
knowledge from data. Thus they are worth a careful study as there are few available
techniques for achieving this double objective, contrary to knowledge induction in
classification problems.

In section 2, we recall how the original OLS works. Section 3 introduces the learn-
ing criteria that will be used in our modified OLS algorithm. Section 4 presents
the modifications necessary to respect the interpretability constraints. In the next
section, the modified algorithm is applied to benchmark problems, compared to the
original one and to reference results found in the literature. A real-world applica-
tion is presented and analyzed in section 6. Finally we give some conclusions and
perspectives for future work.

3

2 Original OLS algorithm

The OLS (orthogonal least squares) algorithm [3,4] can be used in Fuzzy Modeling
to make a rule selection using the same technique as in linearregression. Wang and
Mendel [27] introduced the use of Fuzzy Basis Functions to map the input variables
into a new linear space. We will recall the main steps used in the original algorithm.

Rule construction

First N rules are built, one from each pair in the data set. Hohensohn and Mendel
[15] proposed the following Gaussian membership function for thejth dimension
of theith rule.

µAi
j
(u) = e

[
−

1
2

(
(u−xi

j
)

σj

)2
]

(4)

with σj = s.[max
i=1,2,...,N

(xi
j) − min

i=1,2,...,N
(xi

j)], s being a scale factor whose value de-

pends on the problem.

Rule selection

Once the membership functions have been built, the Fuzzy Inference System (FIS)
optimization is done in two steps. The first step is non-linear and consists in fuzzy
basis function (FBF) construction; the second step, which is linear, is the orthogonal
least square application to the FBF.

A FBF pi(xi) is the relative contribution of theith rule, built from theith example,
to the inferred output:

pi(xi) =
wi(xi)

N∑
q=1

wq(xi)

Thus the fuzzy system output (see equation 3) can be written and viewed as a linear
combination:ŷi =

∑
q

pq(xi) θq, whereθq ∈ R are the parameters to optimize (they

correspond to the rule conclusions). The system is equivalent to the matrix form
y = Pθ + E, y being the observed output whileE is the error term, supposed to be
uncorrelated with thepi(x) or P .

The elementpji of the matrixP represents theith rule firing strength for thejth
pair, i.e. thejth component of thepi vector.

4

The OLS procedure transforms thepi regressors into a set of orthogonal ones using
the Gram-Schmidt procedure. TheP matrix can be decomposed into an orthogonal
one,M , and an upper triangle one,A.
The system becomesy = MAθ + E. Let g = Aθ, then the orthogonal least square

solution of the system iŝgi =
mT

i y

mT
i mi

, 1 ≤ i ≤ r wheremi is theith column of the

orthogonal matrixM .

Optimal θ̂ can be computed using the triangular systemAθ̂ = ĝ.

Thanks to the orthogonal characteristic ofM , there is no covariance, hence vector
(i.e. rule) individual contributions are additive. This property is used to select the
rules. At each step, the algorithm selects the vectormi that maximizes the explained
variance of the observed outputy. The selection criterion is the following one:

[xV ar]i =
g2

i mT
i mi

yTy

The selection stops when the cumulated explained variance is satisfactory. This
occurs at stepr ≤ N when

1 −
r∑

i=1

[xV ar]i < ǫ (5)

ǫ being a threshold value (e.g. 0.01).

Conclusion optimization

As the selectedmi still contain some information related to unselected rules, Ho-
hensohn and Mendel [15] propose to run the algorithm a secondtime. No selection
is made during this second pass, the aim being only to optimize the rule conclu-
sions.

The original algorithm, as described here, results in models with a good numerical
accuracy. However, as we’ll see later on, it has many drawbacks when the objective
is not only numerical accuracy but also knowledge extraction.

3 Learning criteria

Two numerical criteria are presented: the coverage index, based upon an activation
threshold, and the performance index. We will use them to assess the overall system

5

quality. The performance index is an error based index that will allow us to measure
the numerical accuracy of our results, while the coverage index, together with the
activation threshold, will give us information related to the system completeness
with respect to the learning data. To some extent, the coverage index reflects the
potential quality of the extracted knowledge. Linguistic integrity, for its part, is
insured by the proposed method, and thus does not need to be evaluated.

The two criteria are actually independent of the OLS algorithm and can be used to
assess the quality of any Fuzzy Inference System (FIS).

3.1 Coverage index and activation threshold

Consider a rule baseRBr containingr rules such as the one given in equation 1.

Definitions

Let Ii be the interval corresponding to theith input range andIp ⊆ I1 × . . .× Ip be
the subset ofRp covered by the rule base (I1 × . . . × Ip is the Cartesian product).

Definition 1 An activation thresholdα ∈ [0, 1] defines the following constraint:
givenα, a samplexi is said active iff ∃ Rq ∈ RBr s.t.wq(xi) > α.

Definition 2 Let n be the number of active samples. The coverage indexCIα =
n/N is the proportion of active samples for the activation thresholdα.

Note: Increasing the activation threshold reduces the amount of active samples and
transformsIp into a subsetIp

α ⊆ Ip

The threshold choice depends on the conjunctive operator used to compute the rule
firing strength: the use of aprod operator yields lesser firing strengths which will
decrease with the input dimension, while amin operator results in higher and less
dependent firing strengths.

The two-dimensional rule system depicted by figure 1 illustrates the usefulness of
the activation threshold and coverage index in the framework of knowledge extrac-
tion.

3.1.1 Maximum coverage index (α = 0)

CI0 is the maximum coverage index and it gives us two kinds of information:

• Completeness: for a so called complete system, where each data set item ac-
tivates at least one rule, we haveCI0 = 1 while an empty rule base yields

6

Input 12 31

1

2

3

IF input 1 IS 2 AND IF input 2 IS 1

IF input 1 IS 1 AND IF input 2 IS 2

x1,...,34

x35,...,50

x51,...,67

x100

x68,...,99

Fig. 1. Input domain rule coverage

CI0 = 0. The coverage index can thus be used to measure the completeness
of the rule base, with respect to a given data set.

• Exception data:CIα ≈ 1 is often the consequence of exception samples. We call
exception an isolated sample which is not covered by the rulebase. Samplex100

in figure 1 is such an exception.

The maximum coverage index of the system shown in figure 1 is99%, meaning
that there are a few exceptions.

3.1.2 Coverage index forα > 0

Figure 2 shows the previous system behaviour with an activation thresholdα = 0.1.
Unfortunately, the coverage index drastically drops from99% to 66%.

Input 121

1

2

3

3

x35,...,50

x51,...,67

x1,...,34

No threshold (Ip)
0.1 threshold (Ip

0.1)

x68,...,99

x100

Fig. 2. Input domain withα = 0.1

Generally speaking, the use of a coverage index gives indications as to:

• System robustness (see Figure 2).
• Reliability of extracted knowledge: Figure 1 shows that a system can have a good

accuracy and be unreliable.

7

• Rule side effect: if too many samples are found in the rule borders, the rule
base reliability is questionable. Studying the evolution of coverage versus the
activation threshold allows to quantify this ”rule side effect”.

As we shall see in section 5, a blind application of OLS may induce fairly patho-
logical situations (good accuracy and a perfect coverage index dropping down as
soon as an activation threshold constraint is added).

The coverage index and activation threshold are easy-to-use, easy-to-understand
tools with the ability to detect such undesirable rule bases.

3.2 Performance index

The performance index reflects the numerical accuracy of thepredictive system. In

this study, we usePI =
1

n

√√√√
n∑

i=1

∥∥∥ŷi − yi
∥∥∥
2

.

The performance index only takes account of the active samples (n ≤ N , see
definition 2), so a given system may have good prediction results on only a few
of the available samples (i.e. goodPI but poorCIα), or cover the whole data set,
but with a lower accuracy.

4 Proposed modifications for the OLS

In this section, we propose changes that aim to improve induced rule interpretabil-
ity. Rule premises, through variable partitioning, and rule conclusions are both sub-
ject to modification.

Figure 3 is a flowchart describing the method used in the original OLS and the
proposed modifications.

The fuzzy partitioning readability is a prerequisite to build an interpretable rule base
[11]. In the original OLS algorithm, a rule is built from eachitem of the training
set, and a Gaussian membership function is generated from each value of each
variable. Thus a given fuzzy partition is made up of as many fuzzy sets as there
are distinct values within the data distribution. The result, illustrated in figure 4, is
not interpretable. Some membership functions are quasi redundant, and many of the
corresponding fuzzy sets are not distinguishable, which makes it impossible to give
them a semantic meaning. Moreover, Gaussian functions haveanother drawback
for our purpose: their unlimited boundaries, which yield a perfect coverage index,
likely to drop down as soon as an activation threshold is set.

8

r rules
Vocabulary reduction:
r rules with c < r
distinct conclusions

N samples

Second Pass
Matrice P (Nxr)

r Rule conclusions

Least squares

First Pass
Matrice P (NxN)

r Selected Rules

Rule selection

MF design
FBF Building
N rule Initialization

Non linear

Linear
regression

Partition design

(sorted by explained variance)

Fig. 3. Flowchart for the modified OLS algorithm

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Fig. 4. Original fuzzy partition generated from a 106-item sample

4.1 Fuzzy partition readability

The necessary conditions for a fuzzy partition to be interpretable by a human expert
have been studied by several authors [5,8,9]. Let us recall the main points:

• Distinguishability: Semantic integrity requires that themembership functions
represent linguistic concepts different from each other.

• A justifiable number of fuzzy sets [19].
• Normalization: All the fuzzy sets should be normal.
• Overlapping: All the fuzzy sets should significantly overlap.

9

• Domain coverage: Each data point,x, should belong significantly,µ(x) > ǫ, at
least to one fuzzy set.ǫ is called the coverage level [21].

We implement these constraints within a standardized fuzzypartition as proposed
in [24]:

∀x
∑

f=1,2,...,M

µf(x) = 1

∀f ∃ x such as µf(x) = 1
(6)

whereM is the number of fuzzy sets in the partition andµf(x) is the membership
degree ofx to thefth fuzzy set. Equation 6 means that any point belongs at most
to two fuzzy sets when the fuzzy sets are convex.

Due to their specific properties [22] we choose fuzzy sets of triangular shape, except
at the domain edges, where they are semi trapezoidal, as shown in figure 5.a. Such a
M-term standardized fuzzy partition is completely defined byM points, the fuzzy
set centers. With an appropriate choice of parameters, symmetrical triangle MFs
approximately cover the same range as their Gaussian equivalent (see figure 5.b).

−200 0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1
C1 C2 C3 C4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gaussian
σ
µ

= 0.1
= 0.5

Triangular basis = 5 σ

(a) A standardized fuzzy partition (b) Triangle equivalentto a Gaussian MF

Fig. 5. New fuzzy partitions

4.2 Fuzzy partition design

Various methods are available to build fuzzy partitions [18]. In this paper, we want
to use the OLS algorithm to build interpretable rule bases, while preserving a good
numerical accuracy. To be sure that this is the case, we have to compare results
obtained with the original partitioning design in OLS and those achieved with an
interpretable partitioning. To that effect, we need a simple and efficient way to de-
sign standardized fuzzy partitions from data, as the one given below. The fuzzy set
centers are not equidistant as in a regular grid, but are estimated according to the
data distribution, using the well knownk − means algorithm [14]. The multidi-
mensional k-means is recalled in Algorithm 1, we use it here independently in each

10

input dimension.

Algorithm 1 k-means algorithm
1: Let N multidimensional data points denotedxi, i = 1 . . .N

Let C the number of clusters to build
2: Initialization: choose k centroids E(k),k = 1 . . . C

(random or uniformly spaced)
3: Assign each data point to the nearest cluster:

cluster(xi) = argmink(dist(xi, E(k))
4: Compute cluster centroids m(k)
5: while ∃k such as m(k) 6= E(k) do
6: FOR (k=1 to C)E(k) = m(k)
7: GOTO 3
8: end while

How to choose the number of fuzzy sets for each input variable? There are several
criteria to assess partition quality [11] but it is difficultto make an a priori choice.
In order to choose the appropriate partition size, we first generate a hierarchy of
partitions of increasing size in each input dimensionj, denotedFP

nj

j for a nj

size,nmax
j being the maximum size of the partition (limited to a reasonable number

(≈ 7) [19]).

Note:FP
nj

j is uniquely determined by its sizenj , the fuzzy set centers being the
coordinates computed by thek − means algorithm.

The best suited number of terms for each input variable is determined using a refine-
ment procedure based on the use of the hierarchy of fuzzy partitions. This iterative
algorithm is presented below. It calls a FIS generation algorithm to be described
later. It is not a greedy algorithm, unlike other techniques. It does not implement
all possible combinations of the fuzzy sets, but only a few chosen ones.

Table 1 illustrates the first steps of a refinement procedure for a four inpur system.
Detailed procedures are given in Algorithm 2(refinement procedure) and Algorithm
3 (FIS generation).

The key idea is to introduce as many variables, described by asufficient number of
fuzzy sets, as necessary to get a good rule base.

The initial FIS is the simplest one possible, having only onerule (Algorithm 2, lines
1-2; Table 1, line 1). The search loop (algorithm lines 5 to 12) builds up temporary
fuzzy inference systems. Each of them corresponds to addingto the initial FIS one
fuzzy set in a given dimension. The selection of the dimension to retain is based
upon performance and is done in lines 14-15 of the algorithm.If we go back to
table 1, we see that the second iteration corresponds to lines 2 to 5, and that the best
configuration is found by refining input variable # 2. Following this selection, a FIS

11

Line # Iteration # #MF per variable PI CI

1 1 1 1 1 1 PI1 CI1

2 2 2 1 1 1 PI1
2

CI1
2

3 2 1 2 1 1 PI2
2

CI2
2
(best)

4 2 1 1 2 1 PI3
2

CI3
2

5 2 1 1 1 2 PI4
2

CI4
2

6 3 2 2 1 1 PI1
3

CI1
3

7 3 1 3 1 1 PI2
3

CI2
3

8 3 1 2 2 1 PI3
3

CI3
3

(best)

9 3 1 2 1 2 PI4
3

CI4
3

10 4 2 2 2 1 PI1
4

CI1
4

11 4
Table 1
An example of ongoing refinement procedure

Algorithm 2 Refinement procedure
1: iter = 1;∀j nj = 1
2: CALL FIS Generation(Algorithm 3)
3: while iter ≤ itermax do
4: Store system as base system
5: for 1 ≤ j ≤ p do
6: if nj = nmax

j then next j (partition size limit reached for input j)
7: nj = nj + 1
8: CALL FIS Generation(Algorithm 3)
9: PIj = PI

10: nj = nj - 1
11: Restore base system
12: end for
13: if ∀j nj = nmax

j then exit (no more inputs to refine)
14: s = argmin{PIj, j = 1, . . . , p, nj < nmax

j } (Select input to refine)
15: ns = ns + 1
16: CALL FIS Generation(Algorithm 3): returnFISiter

17: iter = iter + 1
18: end while

to be kept is built up. It will serve as a base to reiterate the sequence (Algorithm 2,
lines 3 to 18).

When necessary, the procedure calls a FIS generation algorithm, referred to as Al-
gorithm 3, which is now detailed.

12

The rule generation is done by combining the fuzzy sets of theFP
nj

j partitions
for j = 1, . . . , p, as described by Algorithm 3. The algorithm then removes theless
influential rules and evaluates the rule conclusions, usingoutput training data values
yi, i = 1 . . .N . The condition stated in line5, whereα, the activation threshold

Algorithm 3 FIS generation
Require: {nj | j = 1, ..., p}
1: getFP

nj

j ∀j = 1, ..., p
2: Generate the

∏p
j=1 nj rule premises

3: for all Ruler ∈ FIS do
4: αr = max

k
wr(xk)

5: if αr < α then remove ruler

6: elseinitialize rule conclusionCr = 1

N

N∑
i=1

wryi

7: end for
8: Compute PI

defined in section 3.1, ensures that the rule is significantlyfired by the examples of
the training set.

The procedure does not yield a single fuzzy inference system, but K FIS of in-
creasing complexity. The selection of the best one takes into consideration both
performance and coverage indices. The selectedFISk corresponds to:

k = argmin(PIk, k = 1, . . . , K such as CIα(FISk) ≥ thres), wherePIk and
CIα(FISk) are theFISk performance and coverage indices.

In the following, only the fuzzy partition corresponding tothebestFIS will be kept.
The initial rules are ignored as they will be determined by the OLS.

The use of standardized fuzzy partitions, with a small number of linguistic terms,
ensures that rule premises are interpretable. Moreover, that choice eliminates the
problem ofquasi redundantrule selection, due to MF redundancy and underlined
by authors familiar with these procedures, as [26].

However, the OLS brings forth a different conclusion for each rule. It makes rules
difficult to interpret. We will now propose another modification of the OLS proce-
dure to improve that point.

4.3 Rule conclusions

Reducing the number of distinct output values improves interpretability as it makes
rule comparison easier. Rule conclusions may be assigned a linguistic label if the
number of distinct conclusions is small enough. The easiestway to reduce the num-

13

ber of distinct output values is to adjust conclusions upon completion of the algo-
rithm. We use the following method based on the k-means algorithm.

Given a number of distinct conclusions,c, and the set of training output values
yi, i = 1, 2, . . . , N , the reduction procedure consists in:

• Applying the k-means method [14] to theN output values withc final clusters.
• For each rule of the rule base, replacing the original conclusion by the nearest

one obtained from the k-means.

The vocabulary reduction worsens the system numerical accuracy on training data.
However, rule conclusions are no more computed only with a least square opti-
mization, and the gap between training and test errors may bereduced.

5 Results on benchmark data sets

This section presents, compares and discusses results obtained on two well known
cases chosen in the UCI repository [16].

5.1 Data sets

The data sets are the following ones:

• cpu-performance(209 samples):
Published by Ein-Dor and Feldmesser [7], this data set contains the measured
CPU performance and 6 continuous variables such as main memory size or ma-
chine cycle time.

• auto-mpg(392 samples):
Coming from the StatLib library maintained at Carnegie Mellon University, this
case concerns the prediction of city-cycle fuel consumption in miles per gallon
from 4 continuous and 3 multi-valued discrete variables.

The cpu-performance and auto-mpg datasets are both regression problems. Many
results have been reported for them in the previous years [6,20,23,25].

Experimental method

For the experiments, we use on each dataset a ten-fold cross validation method.
The entire dataset is randomly divided into ten parts. For each part, the training
is done on the nine others while testing is made on the selected one. Besides the
stop criterion based upon the cumulated explained variance(equation 5), another

14

one is implemented: the maximum number of selected rules. The algorithm stops
whenever any of them is satisfied.

5.2 Results and discussion

Tables 2 and 3 summarize the results for original and modifiedOLS on test sub-
sets, for each data set. The original OLS algorithm is applied with only a slight
modification: the conjunction operator in rule premises is the minimum operator
instead of the product. Tests have been carried out to check that results are not
significantly sensitive to the choice of the conjunction operator. The choice of the
minimum allows a fair comparison between data sets with a different number of
input variables.

Both tables have the same structure: the first column gives the average number of
membership functions per input variable, the following ones are grouped by three.
Each group of three corresponds to a different value of the allowed maximum num-
ber of rules, ranging from unlimited to five. The first one of the three columns
within each group is the average number of rules, the second one the average per-
formance indexPI and the third one is the average coverage indexCIα, which
corresponds to the activation thresholdα given in the row label between parenthe-
ses. The first group of three columns corresponds to an unlimited number of rules,
the actual one found by the algorithm being given in the #R column.

#MF #R Perf. Cov.#R Perf. Cov.#R Perf. Cov.#R Perf. Cov.
orig. OLS (0) 27.839.8 69.78 1.0015 74.54 1.0010 98.11 1.005 150.38 1.00
orig. OLS (0.1) 27.839.8 32.52 0.7515 33.32 0.4010 46.65 0.235 113.26 0.03
orig. OLS (0.2) 27.839.8 32.30 0.5915 40.67 0.2110 61.99 0.095 113.26 0.03
mod. OLS (0) 2.7 11.3 41.95 0.9911.3 41.95 0.9910 45.57 0.975 71.96 0.47
mod. OLS (0.1) 2.7 11.3 41.95 0.9911.3 41.95 0.9910 46.01 0.955 71.71 0.45
mod. OLS (0.2) 2.7 11.3 41.92 0.9811.3 41.92 0.9810 45.07 0.915 69.27 0.40
Table 2
Cpu data comparison of original and modified OLS (averaged on10 runs)

#MF #R Perf. Cov.#R Perf. Cov.#R Perf. Cov.#R Perf. Cov.#R Perf. Cov.
orig. OLS (0) 86.8182.9 3.31 1.0020 3.88 1.0015 4.32 1.0010 5.47 1.005 9.35 1.00
orig. OLS (0.1) 86.8182.9 2.91 0.8420 3.08 0.4015 3.22 0.3410 3.35 0.255 3.55 0.18
orig. OLS (0.2) 86.8182.9 2.75 0.7720 2.92 0.3215 3.11 0.2710 3.21 0.215 3.22 0.15
mod. OLS (0) 3.3 19.3 3.03 1.0019.3 3.03 1.0015 3.05 1.0010 2.99 0.995 3.33 0.90
mod. OLS (0.1) 3.3 19.3 3.03 1.0019.3 3.03 1.0015 3.05 1.0010 2.99 0.995 3.36 0.85
mod. OLS (0.2) 3.3 19.3 3.03 1.0019.3 3.03 1.0015 3.05 1.0010 3.00 0.985 3.36 0.81
Table 3
Auto-mpg data comparison of original and modified OLS (averaged on 10 runs)

15

The discussion includes considerations about complexity,coverage and numerical
accuracy of the resulting FIS.
Let us first comment the FIS structures. Clearly the originalOLS yields a more
complex system than the modified one, with a much higher number of membership
functions per input variable. When the number of rules is notlimited, the original
OLS systematically has many more rules than the modified one.As to the perfor-
mances, let us focus on rows one and four, which correspond toα = 0, and on
the first three columns, to allow an unlimited number of rules. This configuration
allows a fair comparison between both algorithms. We see that, for both data sets,
the modified algorithm has an enhanced performance. For the cpu data set, this has
a slight coverage cost, with a loss of one percent, meaning that an average of two
items in the data set is not managed by the systems obtained bythe modified algo-
rithm.
Examination of the next rows (α = 0.1) shows that the modified algorithm systems
have the samePI andCIα than for the zero threshold. It is not at all the case for
the original algorithm systems, where the coverage loss canbe important (from 16
to 25 percent). This well demonstrates the lack of robustness of the original algo-
rithm, as a slight change in input data may induce a significant output variation.
The modified algorithm does not have this drawback.

Figure 6 shows the evolution ofCI0 andPI with the number of rules for each
data set. As expected, the coverage indexCI0 is always equal to 1 for the original
version. For the modified version,CI0 quasi linearly increases with the number of
rules. It means that each newly selected rule covers a set of data items, so that rules
are likely to be used for knowledge induction, as will be shown in more details in
section 6.

For a reasonable number of rules (≥ 10), we see that, whileCI0 ≈ 1, the modified
OLS has a much better accuracy than the original one.
For a low number of rules, the performance indexPI has a very different behaviour
for the two OLS versions. The poor accuracy (high values ofPI) of the original
algorithm can be explained by a low cumulated explained variance, and the good
accuracy observed for the modified algorithm must be put intoperspective of its
poor CI0. As the number of rules increases, both systems display a similar be-
haviour.

Another advantage of the modified OLS noticed in the benchmark results is the
reduced execution time. When averaged over ten runs with an unlimited number
of selected rules, for the CPU and auto cases, it respectively took 1.16 s and 5.65
s CPU on a 32 bit Xeon 3.2 GHz processor for the original OLS algorithm to
complete, while it respectively took 1.03 s and 3.72 s for themodified version.

Table 4 compares the results of the modified OLS method and of other methods
used in the literature (see [23]), in terms of Mean Absolute Error (criterion used in

that reference paper), computed asMAE = 1

n

n∑
i=1

|ŷi − yi|, n being the number of

16

0 5 10 15

0
20

0
40

0
60

0
80

0
10

00

Number of rules

P
er

fo
rm

an
ce

 in
de

x

Number of rules

P
er

fo
rm

an
ce

 in
de

x

C
ov

er
ag

e
in

de
x

0
0.

2
0.

4
0.

6
0.

8
1

cpu data − alpha=0

PI − original OLS
PI − modified OLS
CI − original OLS
CI − modified OLS

0 5 10 15 20

0
2

4
6

8
10

12

Number of rules

P
er

fo
rm

an
ce

 in
de

x

Number of rules

P
er

fo
rm

an
ce

 in
de

x

C
ov

er
ag

e
in

de
x

0
0.

2
0.

4
0.

6
0.

8
1

auto data − alpha=0

PI − original OLS
PI − modified OLS
CI − original OLS
CI − modified OLS

Fig. 6. Evolution of performancePI and coverage indexCI0 versus number of rules

active samples. The first method is a multivariate linear regression (LR), the second
one is a regression tree (RT) and the third one is a neural network (NN). In all cases,
the modified OLS average error is comparable to those of competing methods, or
even better.

Data set Mod.OLSLinear regressionDecision treeNeural network
CPU-Performance 28.6 35.5 28.9 28.7

Auto-mpg 2.02 2.61 2.11 2.02
Table 4
Comparison of mean absolute error of the modified OLS and other methods on test sets

We showed in this section that the proposed modifications of the OLS algorithm

17

Name Description
pH pH in the reactor
vfa volatile fatty acid conc.
qGas biogas flow rate
qIn input flow rate
ratio alkalinity ratio

CH4Gas CH4 concentration in biogas
qCO2 CO2 flow rate

Table 5
Input variables

yield good results on benchmark data sets. We will thus use the modified OLS to
deal with a real world case.

6 A real world problem

The application concerns a fault diagnosis problem in a wastewater anaerobic di-
gestion process, where the ”living” part of the biological process must be monitored
closely. Anaerobic digestion is a set of biological processes taking place in the ab-
sence of oxygen and in which organic matter is decomposed into biogas.

Anaerobic processes offer several advantages: capacity totreat slowly highly con-
centrated substrates, low energy requirement and use of renewable energy by methane
combustion. Nevertheless, the instability of anaerobic processes (and of the at-
tached microorganism population) is a counterpart that discourages their indus-
trial use. Increasing the robustness of such processes and optimizing fault detection
methods to efficiently control them is essential to make themmore attractive to
industrials. Moreover, anaerobic processes are in generalvery long to start, and
avoiding breakdowns has significant economic implications.

The process has different unstable states: hydraulic overload, organic overload, un-
derload, toxic presence, acidogenic state. The present study focuses on the acido-
genic state. This state is particularly critical, and goingback to a normal state is
time consuming, thus it is important to detect it as soon as possible. It is mainly
characterized by a low pH value (< 7), a high concentration in volatile fatty acid
and a low alkalinity ratio (generally< 0.3).

Our data consist of a set of 589 samples coming from a pilot-scale up-flow anaer-
obic fixed bed reactor (volume=0.984m3). Data are provided by the LBE, a labo-
ratory situated in Narbonne, France. Seven input variablessummarized in table 5
were used in the case study.

The output is an expert assigned number from 0 to 1 measuring to what extent the
actual state can be considered as acidogenic.

18

5 5.5 6 6.5 7 7.5 8 8.5 9
0

0.2

0.4

0.6

0.8

1

1.2 A
1
 A

2
 A

3
 A

4

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

1.2

A
1
 A

2
 A

3
 A

4
 A

5

pH vfa

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2 A
1
 A

2
 A

3

40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

A
1
 A

2
 A

3
 A

4
 A

5

Input flow rate (Qin) CH4

Fig. 7. Fuzzy partitions for wastewater treatment application

Fault detection systems in bioprocesses are usually based on expert knowledge.
Multidimensional interactions are imperfectly known by experts. The OLS method
allows to build a fuzzy rule base from data, and the rule induction can help experts
to refine their knowledge of fault-generating process states.

Before applying the OLS, we select the fuzzy partition with the refinement algo-
rithm described in section 4, which yields the selection of four input variables :pH,
vfa, Qin andCH4Gas. The membership functions are shown in Figure 7. Notice
that each membership function can be assigned an interpretable linguistic label.

Results and discussion

We apply the OLS procedure to the whole data set, obtaining a rule base of 53 rules
and a global performancePI = 0.046.

Rule base analysis

Analyzing a rule base is usually a very long task, and must be done anew with each
different problem. Here are some general remarks:

• Rule ordering: amongst the 589 samples, only 35 have an output value greater
than 0.5 (less than10%), while there are 12 rules out of 53 that have a conclusion

19

greater than 0.5 (more than20%). Moreover, 8 of these rules are in the first ten
selected ones (the first six having a conclusion very close toone). This shows
that the algorithm first select rules corresponding to ”faulty” situations. It can
be explained by the fact that the aim of the algorithm is to reduce variance, a
variance greatly increased by a ”faulty” sample. This highlights a very interest-
ing characteristic of the OLS algorithm, which first selectsrules related to rare
samples, often present in fault diagnosis.

• Out of range conclusions: each output in the data set is between 0 and 1. This is
no more the case with the rule conclusions, some of them beinggreater than 1 or
taking negative values. It is due to the least-square optimization method trying to
improve the accuracy by adjusting rule conclusions, without any constraint. This
is one of the deficiencies of the algorithm, at least from an interpretability driven
point of view.

Removing outliers

The fact that rules corresponding to rare samples are favored in the selection pro-
cess has another advantage: the ease with which outliers canbe identified and an-
alyzed. In our first rough analysis of the rule base, two specific rules caught our
attention :

• Rule 5 : If pH is A3 and vfa isA1 and Qin isA1 andCH4 is A1, then output is
0.999

• Rule 6 : If pH is A4 and vfa isA3 and Qin isA3 andCH4 is A5, then output is 1

Both rules indicate a high risk of acidogenesis with a highpH, which is inconsistent
with expert knowledge of the acidogenic state. Further investigation shows that
each of these two rules is activated by only one sample, whichdoes not activate
any other rule. Indeed, one sample has a pH value of 8.5 (clearly not acid) and the
other one has a pH of 7.6, together with an alkalinity ratio (which should be low in
an acidogenic state) greater than 0.8.

These two samples being labeled as erroneous data (maybe a sensor disfunction),
we remove them from the data set in further analysis.

This kind of outliers cannot be managed using traditional noise removal filtering
techniques, it requires expert examination to decide whether they should be re-
moved from learning data.

We renew the OLS procedure on the purified data, and we also perform a reduction
of the output vocabulary, to improve interpretability.

Performance with reduced output vocabulary

The final rule base has 51 rules, the two rules induced by erroneous data having
disappeared. The output vocabulary is reduced from 49 distinct values to 6 differ-

20

ent ones, all of them constrained to belong to the output range. Figure 8 shows the
rule conclusion distribution before and after vocabulary reduction. On the left sub-
figure, two dotted lines have been added to show the observed output range[0− 1].
Rules are easier to interpret, while the distribution features are well conserved. The
new system performance is PI=0.056, which corresponds to anaccuracy loss of 15
percent.

−0.5 0 0.5 1 1.5
0

1

2

3

4

5

Conclusion Value

N
um

be
r

of
 r

ul
es

Rule conclusion distribution
with non−reduced vocabulary

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

Conclusion Value

N
um

be
r

of
 r

ul
es

Rule conclusion distribution
with reduced vocabulary

Fig. 8. Impact of vocabulary reduction on rule conclusions

To test the rule base representativity, we did some experiments on increasing the
activation thresholdα. Up toα = 0.5, only one sample amongst the 587 ones is not
covered by the rule base, which is a good sign as to the robustness of our results.

Another interesting feature is that100% of the samples having an output greater
than 0.2 are covered by the first twenty rules, allowing one tofirst focus on this
smaller set of rules to describe critical states.

Figure 9 illustrates the good qualitative predictive quality of the rule base: we can
expect that the system will detect a critical situation soonenough to prevent any col-
lapse of the process. From a function approximation point ofview, the prediction
would be insufficient. However, for expert interpretation,figure 9 is very interest-
ing. Three clusters appear. They can be labeled asVery low risk, Non neglectable
risk andHigh risk. They could be associated to three kinds of action or alarms.

From a fault detection point of view, some more time should bespent on the few
faultysamples that wouldn’t activate a fault detection trigger set at 0.2 or 0.3. They
have been signaled to experts for further investigation. Each rule fired by those five
samples (asterisk and diamond in figure 9) is also activated by about a hundred
other samples which have a very low acidogenic state. It may be difficult to draw
conclusions from these five samples.

21

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Observed value

In
fe

rr
ed

 v
al

ue

Fig. 9. Prediction with 6 conclusion values.• : Detection with trigger> 0.2 ; {∗,♦} :
Non-detection with trigger = 0.2 ;♦ : Non-detection with trigger = 0.3

7 Conclusion

Orthogonal transform methods are used to build compact rulebase systems. The
OLS algorithm is of special interest as it takes into accountinput data as well as
output data.

Two modifications are proposed in this paper. The first one is related to input par-
titioning. We propose to use a standardized fuzzy partitionwith a reduced number
of terms. This obviously improves linguistic interpretability but also avoids the oc-
currence of an important drawback of the OLS algorithm: redundant rule selection.
Moreover, it can even enhance numerical accuracy.

The second way to improve linguistic interpretability is todeal with rule conclu-
sions. Reducing the number of distinct values used by the rules has some effect on
the numerical accuracy measured on the training sets, but very little impact on the
performance obtained on test sets.

We have successfully applied the modified OLS to a fault detection problem. Our
results are robust, interpretable, and our predictive capacity is more than acceptable.
The OLS was also shown able to detect some erroneous data after a first brief
analysis. When dealing with applications where the most important samples are
rare, OLS can be very useful.

22

We would like to point out the double interest of properly used fuzzy concepts in
a numerical technique. Firstly, linguistic reasoning withinput data, which is only
relevant with readable input partitions, takes into account the progressiveness of
biological phenomena which have a high intrinsic variability. Secondly, a similar
symbolic reasoning can be used on output data. Though interesting for knowledge
extraction, this is rarely considered.

Let us also underline the proposed modifications could benefit to all the simi-
lar algorithms based on orthogonal transforms, for instance the TLS (Total Least
Squares) method [29] which seems to be of particular interest.

A thorough study of the robustness of this kind of models is still to be carried
out. It should include a sensitivity analysis of both algorithm parameters and data
outliers with respect to the generalization ability. The sensitivity analysis could be
sampling-based or be based on statistical techniques (for instance decomposition
of variance). Similarly the rule selection procedure couldbe refined by extending
classical backward-forward stepwise regression procedures to the fuzzy OLS algo-
rithm.

Contrary to other methods, OLS does not perform a variable selection, which can
be a serious drawback. Future work should also focus on combining an efficient
variable selection method with the OLS rule selection.

References

[1] Marwan Bikdash. A highly interpretable form of sugeno inference systems.IEEE
Transactions on Fuzzy Systems, 7 (6):686–696, December 1999.

[2] Jorge Casillas, Oscar Cordon, Francisco Herrera, and Luis Magdalena.Interpretability
Issues in Fuzzy Modeling, volume 128 ofStudies in Fuzziness and Soft Computing.
Springer, 2003.

[3] S. Chen, S. A. Billings, and W. Luo. Orthogonal least squares methods and their
application to non-linear system identification.Int. J. Control, 50:1873–1896, 1989.

[4] S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least squares learning algorithm
for radial basis function networks.IEEE Transactions on Neural Networks, 2:302–
309, March 1991.

[5] J. Valente de Oliveira. Semantic constraints for membership functions optimization.
IEEE Transactions on Systems, Man and Cybernetics. Part A, 29(1):128–138, 1999.

[6] W. Duch, R. Setiono, and J. Zurada. Computational intelligence methods for rule-
based data understanding. InProceedings of the IEEE, volume 92 (5), pages 771–805,
April 2004.

23

[7] P. Ein-Dor and J. Feldmesser. Attributes of the performance of central processing
units: a relative performance prediction model.Communications of the ACM, 30
(4):308–317, 1987.

[8] Jairo Espinosa and Joos Vandewalle. Constructing fuzzymodels with linguistic
integrity from numerical data-afreli algorithm.IEEE Transactions on Fuzzy Systems,
8 (5):591–600, October 2000.

[9] Pierre-Yves Glorennec.Algorithmes d’apprentissage pour systèmes d’inf́erence floue.
Editions Hermès, Paris, 1999.

[10] Pierre-Yves Glorennec.Constrained optimization of fuzzy decision trees, pages 125–
14, in [2], 2003.

[11] Serge Guillaume. Designing fuzzy inference systems from data: an interpretability-
oriented review.IEEE Transactions on Fuzzy Systems, 9 (3):426–443, June 2001.

[12] Serge Guillaume and Brigitte Charnomordic. Generating an interpretable family of
fuzzy partitions.IEEE Transactions on Fuzzy Systems, 12 (3):324– 335, June 2004.

[13] D. Han, I.D. Cluckie, D. Karbassioum, J. Lawry, and B. Krauskopf. River flow
modeling using fuzzy decision trees.Water Resources Management, 16(6):431–445,
2002.

[14] John A. Hartigan and M.A. Wong. A k-means clustering algorithm. Applied Statistics,
28:100–108, 1979.

[15] J. Hohensohn and J. M. Mendel. Two pass orthogonal least-squares algorithm to train
and reduce fuzzy logic systems. InProc. IEEE Conf. Fuzzy Syst., pages 696–700,
Orlando, Florida, June 1994.

[16] http://www.ics.uci.edu/∼mlearn/MLRepository.html. UCI repository of machine
learning databases, 1998.

[17] F. Kossak, M. Drobics, and T. Natschlger. Extracting knowledge and computable
models from data - needs, expectations, and experience. InProc. IEEE Int. Conf. on
Fuzzy Systems, pages 493–498, Budapest, 2004.

[18] Swarup Medasani, Jaeseok Kim, and Raghu Krishnapuram.An overview of
membership function generation techniques for pattern recognition. International
Journal of Approximate Reasoning, 19:391–417, 1998.

[19] G. Miller. The magical number seven, plus or minus two.The Psychological Review,
63:81–97, 1956.

[20] Witold Pedrycz. Logic-driven fuzzy modeling with fuzzy multiplexers. Engineering
Applications of Artificial Intelligence, 17:383–391, 2004.

[21] Witold Pedrycz. Fuzzy control and fuzzy systems. Studies in Fuzziness. Research
Studies Press Ltd, Taunton, Somerset, England, 2nd edition, 1993.

[22] Witold Pedrycz. Why triangular membership functions?Fuzzy sets and Systems, 64
(1):21–30, 1994.

24

[23] J. Quinlan. Combining instance-based model and model-based learning. In
Proceedings of the 10th ICML, pages 236–243, San Mateo, CA, 1993.

[24] Enrique H. Ruspini. A new approach to clustering.Information and Control, 15:22–
32, 1969.

[25] R. Setiono and J.Y.L Thong. An approach to generate rules from neural networks for
regression problems.European Journal of Operational Research, 155:239–250, 2004.

[26] Magne Setnes.Simplification and reduction of fuzzy rules, pages 278–302. in [2].

[27] Li-Xin Wang and Jerry M. Mendel. Fuzzy basis functions,universal approximation,
and orthogonal least squares learning.IEEE Transactions on Neural Networks, 3:807–
814, 1992.

[28] P.J. Woolf and Y. Wang. A fuzzy logic approach to analyzing gene expression data.
Physiological Genomics, 3:9–15, 2000.

[29] John Yen and Liang Wang. Simplifying fuzzy rule-based models using orthogonal
transformation methods.IEEE Transactions on Systems, Man and Cybernetics, 29
(1):13–24, February 1999.

25

