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Abstract. When merging belief functions, Dempster rule of combina-
tion is justified only when information sources can be considered as inde-
pendent. When this is not the case, one must find out a cautious merging
rule that adds a minimal amount of information to the inputs. Such a
rule is said to follow the principle of minimal commitment. Some condi-
tions it should comply with are studied. A cautious merging rule based
on maximizing expected cardinality of the resulting belief function is
proposed. It recovers the minimum operation when specialized to pos-
sibility distributions. This form of the minimal commitment principle
is discussed, in particular its discriminating power and its justification
when some conflict is present between the belief functions.
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1 Introduction

There exist many fusion rules in the theory of belief functions [13]. When several
sources deliver information over a common frame of discernment, combining
belief functions by Dempster’s rule [4] is justified only when the sources can
be assumed to be independent. When such an assumption is unrealistic and
when the precise dependence structure between sources cannot be known, an
alternative is to adopt a conservative approach to the merging of the belief
functions (i.e. by adding no extra information nor assumption in the combination
process). Adopting such a cautious attitude means that we apply the “least
commitment principle”, which states that one should never presuppose more
beliefs than justified. This principle is basic in the frameworks of possibility
theory, imprecise probability [15], and the Transferable Belief Model (TBM) [14].
It can be naturally exploited for cautious merging belief functions.

In this paper, we study general properties that a merging rule satisfying the
least commitment principle should follow when the sources are logically consis-
tent with one another. An idempotent cautious merging rule generalizing the



minimum rule of possibility theory is proposed. Section 2 recalls some basics
about belief functions. Section 3 recalls an approach to the conjunctive merging
of belief functions proposed by Dubois and Yager in the early nineties and shows
it provides a natural least committed idempotent merging rule for belief func-
tions, where least commitment comes down to maximizing expected cardinality
of the result. Finally, Section 4 discusses limitations of the expected cardinality
criterion, raising interesting issues on the non-unicity of solutions, and discussing
other rules proposed in the literature especially when some conflict is present
between the sources.

2 Preliminaries

Let X be the finite space of cardinality |X| with elements X = x1, . . . , x|X|.

Definition 1. A basic belief assignment (bba) [10] is a function m from the
power set of X to [0, 1] s.t. m(∅) = 0 and

∑
A⊆X m(A) = 1.

Let MX the set of bba’s on 2|X|. A set A s.t. m(A) > 0 is called a focal set.
The number m(A) > 0 is the mass of A. Given a bba m, belief, plausibility and
commonality functions of an event E ⊆ X are, respectively

bel(E) =
∑

A⊆E

m(A) ; pl(E) =
∑

A∩E 6=∅

m(A) = 1 − bel(Ac) ; q(E) =
∑

E⊆A

m(A)

A belief function measures to what extent an event is directly supported by
the available information, while a plausibility function measures the maximal
amount of evidence that could support a given event. A commonality function
measures the quantity of mass that may be re-allocated to a particular set from
its supersets. The commonality function increases when bigger focal sets receive
greater mass assignments, hence the greater the commonality degrees, the less
informative is the belief function. A bba is said to be non-dogmatic if m(X) > 0
hence q(A) > 0,∀A 6= ∅.

A bba m can also be interpreted as a probability family [15] Pm such that
Bel(A) and Pl(A) are probability bounds: Pm = {P |∀A ⊂ X, Bel(A) ≤ P (A) ≤
Pl(A)}. In the sequel of the paper, we mainly focus on two special kinds of bbas
: namely, possibility distributions and generalized p-boxes.

A possibility distribution [16] is a mapping π : X → [0, 1] from which two dual
measures (respectively the possibility and necessity measures) can be defined :
Π(A) = supx∈A π(x) and N(A) = 1 − Π(Ac). In terms of bba, a possibility
distribution is equivalent to a bba whose focal sets are nested. The plausibility
(Belief) measure then reduces to a Possibility (Necessity) measure.

A p-box [9] is a pair of cumulative distributions [F , F ] defining a probability
family P[F,F ] = {P |F (x) ≤ F (x) ≤ F (x) ∀x ∈ <}. A generalized p-box [6] is

a generalization of a p-box, defined on an arbitrary (especially, finite) ordered
space (whereas usual p-boxes are defined on the real line). If an order ≤R is
defined on X, to any bba, a generalized p-box can be associated s.t. F (x)R =



Pl({xi|xi ≤R x}) and F (x)R = Bel({xi|xi ≤R x}), but it retains only a part of
the information contained in the bba, generally.

Dubois and Prade [7] defined three information orderings based on different
notions related to belief functions :

– pl-ordering. if pl1(A) ≤ pl2(A) ∀A ⊆ X, we write m1 vpl m2;

– q-ordering. if q1(A) ≤ q2(A) ∀A ⊆ X, we write m1 vq m2;

– s-ordering. if m1 is a specialization of m2, we write m1 vs m2.

Informally, a bba m2 is a specialization of a bba m1 if every mass m1(A) can be
reallocated to subsets of A in m2 (i.e. the mass m1(A) “flows down” to subsets
B ⊆ A in m2) so as to recover m2. If m2 is a specialization of m1, it means that
beliefs represented by the bba m2 are more focused than those from the bba
m1. In other words, m2 can be judged more informative than m1. If we interpret
bbas in terms of probability families, another means to compare them in terms
of imprecision is to compare such families. We can say that m1 is more precise
than m2 iff Pm1

⊂ Pm2
. This is equivalent to the pl-ordering. More generally if

we have m1 vx m2 (x corresponding to one of the three orderings), we say that
m2 is x-less committed than m1. Dubois and Prade proved that m1 vs m2 imply
m1 vq m2 and m1 vpl m2, but that the reverse is not true (hence, s-ordering is
the strongest ordering of the three).

As these relations are partial orders, comparing bbas with respect to s, pl

or q-ordering can be complex and often leads to incomparability (i.e. non unic-
ity of the solution). A simpler tool for comparing bbas is to measure the non-
commitment of a bba by its expected cardinality, which reads

I(m) =
∑

A⊆X

m(A)|A|

where |A| is the cardinality of A. Expected cardinality is an imprecision measure,
and its value is the same as the cardinality of the fuzzy set equivalent to the
contour function (i.e. I(m) =

∑
xi∈X pl(xi)). It is coherent with specialization

ordering (and hence with the two others) since if m1 is a specialization of m2,
then I(m1) ≤ I(m2). This definition is the one we will use in the sequel.

3 A least-committed merging rule

A bba built by merging two different bbas m1,m2 is supposed to be obtained
by the following procedure, denoting Fi the set of focal sets of mi:

1. A joint bba m is built on X × X, having focal sets of the form A × B

where A ∈ F1, B ∈ F2 and preserving m1,m2 as marginals. It means that
m1(A) =

∑
B∈F2

m(A,B) and likewise for m2.

2. Each joint mass m(A,B) should be allocated to the subset A∩B only, where
A and B are focal sets of m1 and m2 respectively.



We call a merging rule satisfying these two conditions conjunctive3, and denote
Mm1∩m2

X the set of conjunctively merged bba’s. The idea behind the conjunctive
approach is to keep as much information as possible from the fusion process.
However not every bba m∩ obtained by conjunctive merging is normalized (i.e.
one may get m(∅) 6= 0). It is clear that a merged bba m∩ on X in the above
sense is a specialization of both m1 and m2.

In fact three situations may occur

– Mm1∩m2

X contains only normalized belief functions. It means that ∀A ∈
F1, B ∈ F2, A ∩ B 6= ∅. Only in that case does the result of merging by
Dempster rule of combination belong to Mm1∩m2

X . The two bbas are said to
be logically consistent.

– Mm1∩m2

X contains both subnormalized and normalized bbas. It means that
∃A,B,A∩B = ∅ and that the marginal-preservation equations have solutions
which allocate zero mass m(A,B) to such A × B.

– Mm1∩m2

X contains only subnormalized belief functions. A result from [3]
indicates that this situation is equivalent to Pm1

∩ Pm2
= ∅. The two bbas

are said to be conflicting.

A cautious merging rule is then one that selects a least committed bba in
Mm1∩m2

X for any of the three orderings given above. In order to avoid incom-
parabilities, we define a least-committed bba in Mm1∩m2

X as one with maximal
expected cardinality I(m). A conjunctive merging rule is denoted ⊕, and a least-
committed merging rule

∧
.

Now suppose m1 = m2 = m. The least committed specialisation of m is m

itself. Hence the following natural requirement:

Idempotence The least-committed rule
∧

should be idempotent.

The following proposition directly follows from this requirement:

Proposition 1. Let m1 be a specialization of m2, then the result of the least
committed rule

∧
should be m1 � m2 = m̂12 = m1.

Although very important, this result concerns very peculiar cases and does
not give us guidelines as to how general bbas should be combined to result in a
least-committed bba (in the sense of expected cardinality). In [8], by using the
concept of commensurate bbas, Dubois and Yager show that there are a lot of
idempotent rules that combine two bbas, each of them giving different results.
In the following, we slightly generalize the notion of bba and consider it as a
relation between the power set of X and [0, 1]. In other words, a generalized bba
may assign several weights to the same subset of X.

Definition 2. Let m be a bba with focal sets A1, . . . , An and associated weights
m1, . . . ,mn. A split of m is a bba m′ with focal sets A′

1, . . . , A
′
n′ and associated

weights m′1, . . . ,m′n′

s.t.
∑

A′

j
=Ai

m′j = mi

3 A disjunctive merging rule could be defined likewise, changing ∩ into ∪.



In other words, a split is a new bba where the original weight given to a focal
set is separated in smaller weights given to the same focal set, with the sum of
weights given to a specific focal set being constant. Two generalized bbas m1,m2

are said to be equivalent if pl1(E) = pl2(E) and bel1(E) = bel2(E) ∀E ⊆ X.
If m1 and m2 are equivalent, it means that they are splits of the same regular
bba [8]. In the following, a bba should be understood as a generalized one.

Definition 3. Let m1, m2 be two bbas with respective focal sets {A1, . . . , An},
{B1, . . . , Bk} and associated weights {m1

1, . . . ,m
n
1}, {m1

2, . . . ,m
k
2}. Then, m1

and m2 are said to be commensurate if k = n and there is a permutation σ

of {1, . . . , n} s.t. m
j
1 = m

σ(i)
2 ,∀i = 1, . . . , n.

Two bbas are commensurate if their distribution of weights over focal sets can
be described by the same vector of numbers. In [8], Dubois and Yager propose
an algorithm, given a prescribed ranking of focal sets on each side, that makes
any two bbas commensurate by successive splitting. Based on this algorithm,
they provide an idempotent rule

⊕
that allows to merge any two bbas. This

merging rule is conjunctive and the result depends on the ranking of focal sets
used in the commensuration algorithm, summarized as follows:

– Let m1, m2 be two bbas and {A1, . . . , An}, {B1, . . . , Bk} the two sets of
ordered focal sets with weights {m1

1, . . . ,m
n
1}, {m

1
2, . . . ,m

k
2}

– By successive splitting of each bbas (m1, m2), build two generalised bbas
{R1

1, . . . , R
l
1} and {R1

2, . . . , R
l
2} with weights {m1

R1
, . . . ,ml

R1
}, {m1

R2
, . . . ,ml

R2
}

s.t. mi
R1

= mi
R2

and
∑

Ri
1
=Aj

= m
j
1,

∑
Ri

2
=Bj

= m
j
2.

– Algorithm results in two commensurate generalised bbas mR1
, mR2

that are
respectively equivalent to the original bbas m1, m2.

Once this commensuration is done, the conjunctive rule
⊕

proposed by
Dubois and Yager defines a merged bba m12 ∈ Mm1∩m2

X with focal sets {Ri
1

L

2 =

Ri
1∩Ri

2, i = 1, . . . , l} and associated weights {mi
R1

L

2
= mi

R1
= mi

R2
, i = 1 . . . , l}.

The whole procedure is illustrated by the following example.

Example 1. Commensuration

l mRl Rl
1 Rl

2 Rl
1

L

2

m1 m2 1 .5 A1 B1 A1 ∩ B1

A1 .5 B1 .6 2 .1 A2 B1 A2 ∩ B1

A2 .3 B2 .2 → 3 .2 A2 B2 A2 ∩ B2

A3 .2 B3 .1 4 .1 A3 B3 A3 ∩ B3

B4 .1 5 .1 A3 B4 A3 ∩ B4

From this example, it is easy to see that the final result crucially depends of
the chosen rankings of the focal sets of m1 and m2. In fact, it can be shown that
any conjunctively merged bba can be produced in this way.

Definition 4. Two commensurate generalised bbas are said to be equi-commen-
surate if each of their focal sets has the same weight.



Any two bbas m1, m2 can be made equi-commensurate. In our example, bbas
can be made equi-commensurate by splitting the first line into five similar lines
of weight 0.1 and the third line into two similar lines of weight 0.1. Every line
then has weight 0.1, and applying Dubois and Yager’s rule to these bbas yields a
bba equivalent to the one obtained before equi-commensuration. Combining two
equi-commensurate bbas {R1

1, . . . , R
l
1}, {R

1
2, . . . , R

l
2} by Dubois and Yager rule

results in a bba s.t every focal element in {R1
1

L

2, . . . , R
l
1

L

2} has equal weight

mR1
L

2
(0.1 in our example). The resulting bba is still in Mm1∩m2

X .

Proposition 2. Any merged bba in Mm1∩m2

X can be reached by means of Dubois
and Yager rule using appropriate commensurate bbas equivalent to m1 and m2

and the two appropriate rankings of focal sets.

Proof. We assume masses (of marginal and merged bbas) are rational numbers.
Let m ∈ Mm1∩m2

X be the merged bba we want to reach by using Dubois and
Yager’s rule. Let m(Ai, Bj) be the mass allocated to Ai ∩ Bj in m. It is of
the form k12(Ai, Bj) × 10−n where k12, n are integers. By successive splitting

followed by a reordering of elements R
j
1, we can always reach m. For instance,

let kR be equal to the greatest common divisor of all values k12(Ai, Bj). Then,
k12(Ai, Bj) = qij × kR, for an integer qij . Then, it suffices to re-order elements

Rk
1 by a re-ordering σ s.t. for qij of them, Rk

1 = Ai and R
σ(k)
2 = Bj . Then,

by applying Dubois and Yager’s rule, we obtain the result m. From a practical
standpoint, restricting ourselves to rational numbers has no importance: rational
numbers being dense in reals, this means that we can always get as close as we
want to any merged bba.

For cautious merging, it is natural to look for appropriate rankings of focal sets
so that the merged bba obtained via commensuration has maximal cardinality.
The answer is : rankings should be extensions of the partial ordering induced by
inclusion (i.e. Ai < Aj if Ai ⊂ Aj ). This is due to the following result:

Lemma 1. Let A,B,C,D be four sets s.t. A ⊆ B and C ⊆ D. Then, we have
the following inequality

|A ∩ D| + |B ∩ C| ≤ |A ∩ C| + |B ∩ D| (1)

Proof. From the assumption, the inequality |(B \A)∩C| ≤ |(B \A)∩D| holds.
Then consider the following equivalent inequalities:

|(B \ A) ∩ C| + |A ∩ C| ≤ |A ∩ C| + |(B \ A) ∩ D|

|B ∩ C| ≤ |A ∩ C| + |(B \ A) ∩ D|

|A ∩ D| + |B ∩ C| ≤ |A ∩ C| + |A ∩ D| + |(B \ A) ∩ D|

|A ∩ D| + |B ∩ C| ≤ |A ∩ C| + |B ∩ D|

hence the inequality (1) is true.



When using equi-commensurate bbas, masses in the formula of expected
cardinality can be factorized, and expected cardinality then becomes:
I(m)R1

L

2
= mR1

L

2

∑l
i=1 |R

i
1

L

2| = mR1
L

2

∑l
i=1 |R

i
1 ∩ Ri

2|, where mR1
L

2
is

the smallest mass enabling equi-commensuration. We are now ready to prove
the following proposition

Proposition 3. If m ∈ Mm1∩m2

X is minimally committed for expected cardinal-
ity, there exists an idempotent conjunctive merging rule

∧
constructing m by

the commensuration method, s.t. focal sets are ranked on each side in agreement
with the partial order of inclusion.

Proof. Suppose m̂12 ∈ Mm1∩m2

X is minimally committed for expected cardi-
nality. It can be obtained by commensuration. Let mR1

,mR2
be the two equi-

commensurate bbas with n elements each derived from the two original bbas
m1,m2. Suppose that the rankings used display four focal sets Ri

1, R
j
1, R

i
2, R

j
2,

i < j, such that Ri
1 ⊃ R

j
1 and Ri

2 ⊆ R
j
2. By Lemma 1, |Rj

1 ∩ R
j
2| + |Ri

1 ∩ Ri
2| ≤

|Rj
1 ∩ Ri

2| + |Ri
1 ∩ R

j
2|. Hence, if we permute focal sets Ri

1, R
j
1 before apply-

ing Dubois and Yager’s merging rule, we end up with a merged bba mR′

1
L

2

s.t. I(mR1
L

2
) ≤ I(mR′

1
L

2

). Since any merged bba can be reached by splitting

m1,m2 and by inducing the proper ranking of cocal sets of the resulting bbas
mR1

,mR2
, any merged bba m̂12 ∈ Mm1∩m2

X maximizing expected cardinality
can be reached by Dubois and Yager’s rule, using rankings of focal sets in ac-
cordance with the inclusion ordering.

Ranking focal sets in accordance with inclusion is neither sufficient nor the
only way of maximizing expected cardinality when merging two given bbas, as
shown by the following examples.

Example 2. Let m1,m2 be two bbas of the space X = x1, x2, x3. Let m1(A1 =
{x1, x2}) = 0.5,m1(A2 = {x1, x2, x3}) = 0.5 be the two focal sets of m1 and
m2(B1 = {x1, x2}) = 0.2,m2(B2 = {x2}) = 0.3,m2(B3 = {x1, x2, x3}) = 0.5 be
the focal sets of m2. The following table shows the result of Dubois and Yager’s
merging rule after commensuration:

l mRl Rl
1 Rl

2 Rl
1

L

2

1 .2 A1 B1 A1 ∩ B1 = {x1, x2}
2 .3 A1 B2 A1 ∩ B2 = {x2}
3 .5 A2 B3 A2 ∩ B3 = {x1, x2, x3}

Although focal sets Bi are not ordered by inclusion ( B1 ⊃ B2), the result
maximizes expected cardinality (the result is m2, which is a specialization of
m1). This shows that the technique based on proposition 3 is not necessary
(nevertheless, the same result is obtained by using order B2, B1, B3).

Now, consider the same bba m1 and another bba m2 s.t. m2(B1 = {x2}) =
0.3, m2(B2 = {x2, x3}) = 0.3, m2(B3 = {x1, x2}) = 0.1, m2(B4 = {x1, x2, x3}) =
0.3. m2 is no longer a specialization of m1, and the order B1, B2, B3, B4 is one of
the two possible extensions of the partial order induced by inclusion. The result
of Dubois and Yager’s rule gives us:



l mRl Rl
1 Rl

2 Rl
1

L

2

1 .2 A1 B1 A1 ∩ B1 = {x2}
2 .3 A1 B2 A1 ∩ B2 = {x2}
3 .1 A2 B2 A2 ∩ B2 = {x2, x3}
4 .1 A2 B3 A2 ∩ B3 = {x1, x2}
5 .3 A2 B4 A1 ∩ B4 = {x1, x2, x3}

and the expected cardinality of the merged bba is 1.8. If, instead of the order
B1, B2, B3, B4, we choose the order B1, B3, B2, B4 (i.e. the other extension of the
partial order induced by inclusion), applying Dubois and Yager’s rule gives us a
merged bba of expected cardinality 2.0, which is higher than the previous one.
Hence, we see that proposition 3 is not sufficient in general to reach maximal
cardinality. Thus, proposition 3 gives us guidelines for combining belief functions
so as to maximise cardinality, but further conditions should be stated to select
the proper total orderings of focal sets.

4 Beyond least-commitment based on expected

cardinality

Least committed merging by expected cardinality maximisation is coherent with
specialization since if an s-least committed bba exists, then it has maximal ex-
pected cardinality. But other notions of minimal commitment exist, that do not
relate to expected cardinality. This section discusses arguments pro and con the
use of this notion, first for logically consistent bbas and then for more general
ones.

4.1 Retrieving the minimum rule of possibility theory

For the special case of possibility distributions, the order between focal sets in-
duced by inclusion is complete. It means that, in this case, applying proposition 3
results in an unique consonant merged bba with contour function min(π1, π2),
which corresponds to the usual minimum operator [8]. As the minimum is the
most cautious conjunctive merging operator in possibility theory, it shows that
our proposition is coherent with and thus justifies the possibilistic approach, as
suggested by Smets[12]. One may also conjecture that merged bbas that max-
imize expected cardinality are also least-committed in the sense of the relative
specificity of their contour functions (m1 is less committed than m2 in this sense
if pl1(x) ≥ pl2(x) ∀x ∈ X). Nevertheless, the minimum of two possibility distri-
butions is not the only cardinality maximizer, as the next example shows:

Example 3. Consider the two following possibility distributions π1,π2, expressed
as belief structures m1,m2

π1 = m1 π2 = m2

Focal sets Mass Focal sets Mass
{x1, x2, x3} 0.5 {x3, x4, x5} 0.5

{x0, x1, x2, x3, x4} 0.5 {x2, x3, x4, x5, x6} 0.5



The following merged bbas C1, C2 ∈ Mm1∩m2

X have the same contour func-
tion, hence (maximal) expected cardinality equal to 2.

C1 = πmin C2

Focal sets Mass Focal sets Mass
C11 = {x3} 0.5 C21 = {x3, x4} 0.5

C12 = {x2, x3, x4} 0.5 C22 = {x2, x3} 0.5

This interesting example is discussed below.

4.2 Refining expected cardinality by the pl- or q-ordering

As maximizing expected cardinality is coherent with s-least commitment and can
lead to non-uniqueness of the solution, discriminating different solutions can be
done by using pl- or q-ordering. Choosing one or the other matters, since even for
the simple example 3, we have C1 @pl C2 and C2 @q C1. Since C1 @pl C2 is equiv-
alent to PC1

⊂ PC2
(e.g. the probability distribution p(x2) = 0.5, p(x4) = 0.5 is

inside PC2
, and not in PC1

), choosing the pl ordering is coherent with a prob-
abilistic interpretation of belief functions and shows the limitation of proposi-
tion 3. Note that in the example, the bba C2 is the generalized p-box (with the
order x1 <R x2 <R . . . <R xn on elements of X) corresponding to the possibil-
ity distribution C1. It is not surprising that PC1

⊂ PC2
, since the probability

family induced by a possibility distribution is included in the family induced by
its corresponding p-box [1].

Besides, choosing the q−ordering to discriminate solutions (which yields C1

in example 3) seems more in accordance with proposition 3 (and thus with the
particular case of possibility distributions). Moreover, as the commonality func-
tion increases when larger focal sets receive greater mass assignments, it could
be argued that the q−ordering is more in accordance with the TBM approach.
Smets [12] suggests without proof that in the case of merging possibility distri-
butions, the minimum rule is least q−committed, like in the example.

4.3 Minimizing conflict

When two bbas are not logically consistent (i.e. there are focal elements Ai,Bj

for which Ai ∩ Bj = ∅), a conjunctively merged bba that maximizes expected
cardinality may not, in general, minimize conflict (i.e. m ∈ Mm1∩m2

X s.t. m(∅)
is minimal). This is illustrated by the following example:

Example 4. Consider the two following possibility distributions π1,π2, expressed
as belief structures m1,m2

π1 = m1 π2 = m2

Focal sets Mass Focal sets Mass
{x1, x2} 0.5 {x4} 0.5

{x0, x1, x2, x3, x4} 0.5 {x2, x3, x4, x5, x6} 0.5



And the following table shows the result of applying the minimum (thus maximis-
ing expected cardinality) and the unnormalized Dempster rule of combination

Min(π1, π2) unnormalized Dempster’s rule
Focal sets Mass Focal sets Mass Focal sets Mass
{x2, x3, x4} 0.5 {x2} 0.25 {x2, x3, x4} 0.25

∅ 0.5 {x4} 0.25 ∅ 0.25

With Dempster rule, conflict value is 0.25 and expected cardinality is 1.25, while
with the minimum, the conflict value is 0.5 and expected cardinality is 1.5.

Provided one considers that minimizing the conflict is as desirable as find-
ing a least-committed way of merging the information, this can problematic. A
possible alternative is then to find m ∈ Mm1∩m2

X that is least-committed among
those for which m(∅) is minimal. This problem was studied by Cattaneo in [2].
Cattaneo proposes to find the merged bba m ∈ Mm1∩m2

X that maximizes the
following function:

F (m) = m(∅)f(0) + (1 − m(∅))
∑

A6=∅

m(A)log2(A) (2)

with f(0) a real number s.t. f(0) < |X|. In the above equation, m(∅)f(0) can
be seen as a penalty given to the evaluation of the merged belief when conflict
appears, while the second part of the right-hand side of equation (2) is equivalent
to expected cardinality where |A| is replaced by log2(|A|) (more generally, we
can replace |A| by any non-decreasing function f(|A|) from

�
to � ). A similar

strategy (penalizing the appearance of conflict) could thus be adopted with ex-
pected cardinality (or with any function f(|A|)), nevertheless, it would not be
without inconvenient:

– adding penalty to conflict is computationally less efficient than using ex-
pected cardinality alone, since proposition 3 does not hold.

– Cattaneo mentions that associativity and conflict minimization are incom-
patible, while our rule is at least associative in the case of possibility distri-
butions (other cases still have to be explored).

Now, the claim that a cautious conjunctive rule should give a merged bba where
the conflict is minimized is questionable. This is shown by our small example 4,
where minimizing the conflict, by assigning zero mass to empty intersections
while respecting the marginals, produces the bba m({x2}) = 0.5,m({x4}) = 0.5,
which is the only probability distribution distribution in Pm1

∩Pm2
. Indeed, this

bba is the most precise possible result, and its informational content is clearly
more adventurous than the bba corresponding to min(π1, π2).

4.4 Least commitment based on the weight function

Any non dogmatic belief function with bba m can be uniquely represented as the
conjunctive combination of the form m =

⊙
A6=X Aw(A) [11], where w(A) is a



positive weight, and Aw(A) represents the (generalized ) simple support function
with bba µ such that µ(A) = 1 − w(A) and µ(X) = w(A), and

⊙
denotes

the unnormalized Dempster rule of combination. Note that if w(A) ∈ [0, 1],
µ is a simple support bba. Otherwise, it is not a bba. Denoeux [5] introduces
another definition of least commitment calling a bba m1 less w-committed than
m2 whenever w1(A) ≤ w2(A),∀A 6= X. Denoeux proposes to apply the following
cautious rule to weight functions:

w12(A) = min(w1(A), w2(A)),∀A 6= X.

and he shows that it produces the weight function of the least w-committed
merged bba among those that are more w-committed than both marginals m1

and m2. If a bba is less w-committed than another one, then it is a specialisation
thereof. Our conjunctive merging only requires the result to be more s-committed
than m1 and m2. which is a weaker condition than to be more w-committed.
Now, apply both rules to the following example (2 of [5]).

Example 5. : Consider X = {a, b, c}, m1 defined by m1({a, b}) = 0.3, m1({b, c}) =
0.5, m1(X) = 0.2; m2 defined by m2({b}) = 0.3, m2({b, c}) = 0.4, m2(X) = 0.3.
Results of both rules are given in the following table

Denoeux’s rule (mD) Max. Exp. Card. rule (mC)
Focal Sets Mass Focal Sets Mass Focal Sets Mass Focal Sets Mass

{b} 0.6 {b, c} 0.2 {b} 0.3 {X} 0.2
{a, b} 0.12 {X} 0.08 {b, c} 0.5

In this example, our conjunctive cautious rule yields a merged bba mC that
is s-less committed (and hence has a greater expected cardinality) than mD, the
one obtained with Denoeux’s rule. Nevertheless, the merged bba obtained by
maximizing expected cardinality is not comparable in the sense of the w-ordering
with any of the three other bbas (m1,m2,m

D), nor does it fulfil Denoeux’s
condition of being more w-committed than m1 and m2. The cautious w-merging
of possibility distributions does not reduce to the minimum rule either. Thus, the
two approaches are at odds. As it seems, using the w-ordering allows to easily
find a unique least-committed element, at the expense of restricting the search to
a subset of Mm1∩m2

X due to the use of the w-ordering (which can be questioned
in the scope of a cautious approach). See [5] for a more detailed discussion on
these issues.

In his paper, Denoeux generalizes both
⊙

and his cautious rule with trian-
gular norms. However, the set of non-dogmatic belief functions equipped with⊙

forms a group, as is the product of positive w-numbers. So the relevant set-
ting for generalizing the product of weight functions seems to be the one of
uninorms. But the minimum is not a uninorm on the positive real line. It is the
greatest t-norm on [0, 1], in particular, greater than product, and this property is
in agreement with minimal commitment of contour functions. But the minimum
rule no longer dominates the product on the positive real line, so that the bridge
between Denoeux’s idempotent rule and the idea of minimal commitment is not
obvious beyond the w-ordering.



5 Conclusions

When our knowledge about the dependencies existing between multiple sources
is poor, Dempster rule of combination cannot be applied. The merging of bbas
should follow the principle of least-commitment, or said differently, we should
adopt a cautious attitude. Nevertheless, the various definitions of least-commitment
often lead to indecision (i.e. to non-unicity of the solution). In this paper, we
have studied the maximisation of the expected cardinality of the merged bba
and proposed an idempotent merging rule, based on the commensuration of
bbas respecting the partial ordering induced by inclusion between focal sets. It
encompasses the minimum rule on possibility distributions, thus justifying it in
terms of least commitment. However more investigations are needed to make
our proposition practically convenient and to articulate the expected cardinality
criterion with other notions of least commitment, based on generalized forms of
bba cardinality, on the comparison of contour functions, and other information
orderings in the theory of belief functions.
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