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Abstract. When merging belief functions, Dempster rule of combina-
tion is justified only when sources can be considered as independent.
When dependencies are ill-known, it is usual to ask the merging opera-
tion to satisfy the property of idempotence, as this property ensures a
cautious behaviour in the face of dependent sources. There are different
strategies to find such rules for belief functions. One strategy is to rely
on idempotent rules used in either more general or more specific frame-
works and to respectively study their particularisation or extension to
belief functions. In this paper, we try to extend the minimum rule of
possibility theory to belief functions. We show that such an extension
is not always possible, unless we accept the idea that the result of the
fusion process can be a family of belief functions.
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1 Introduction

There exist many fusion rules in the theory of belief functions [22], the best
known being Dempster’s rule [4], either normalized or not. When several sources
deliver information over a common frame of discernment X , combining be-
lief functions by Dempster’s rule is justified only when the sources can be as-
sumed to be independent. However, such an assumption cannot always be made.
Sometimes, a specific dependence structure between sources can be assumed
(or known), and merging rules corresponding to such structures can then be
used [8,20,15] (for example, an assumption of complete positive or negative cor-
relation between the sources precision).

However, assuming that the (in)dependence structure between sources is well
known is often unrealistic. In those cases, an alternative is to adopt a conserva-
tive approach when merging belief functions (i.e. by adding no extra information
nor assumption in the combination process, or the least possible amount of it).
Adopting such a cautious attitude is equivalent to applying the “least commit-
ment principle”, which informally states that one should never presuppose more
beliefs than justified. This principle is basic in the frameworks of possibility the-
ory, imprecise probability [24], and the Transferable Belief Model (TBM) [23].
It can be naturally exploited for the cautious merging of belief functions.
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This cautious approach can be interpreted and used in different ways. For
instance, Denoeux [6] proposes a cautious conjunctive rule of combination based
on Smets [21] canonical decomposition. Cattaneo [2] proposes to first consider
the set of merged belief functions minimizing the resulting conflict (hence maxi-
mizing the result coherence) and then to select the most cautious belief function
among them. Recently [7], we have proposed to maximize expected cardinality
of belief functions in order to find a cautiously merged belief function. Although
different, all these approaches agree on the fact that a cautious conjunctive merg-
ing rule should satisfy the property of idempotence, as this property ensures that
the same information supplied by two dependent sources will remain unchanged
after merging.

There are mainly three strategies to construct idempotent rules that make
sense in the belief function setting. The first one looks for idempotent rules
that satisfy a certain number of desired properties and appear sensible in the
framework of belief functions. This is the solution retained by Denoeux [6] and
Cattaneo [2]. The second strategy relies on the natural idempotent rule consist-
ing of intersecting sets of probabilities and tries to express it in the particular
case of belief functions (Chateauneuf [3]). Finally, the third approach, explored
in this paper, starts from the natural idempotent rule in a less general frame-
work, possibility theory, trying to extend it to belief functions. Namely, we study
the generalisation of the minimum rule, viewing possibility distributions as con-
tour functions of consonant belief functions [19]. If we denote (m1,F1), (m2,F2)
two belief functions, P1,P2 two sets of probabilities, and π1, π2 two possibility
distributions, the three approaches are summarized in Figure 1 below.

P1,P2

(m1,F1), (m2,F2)

π1, π2

P1 ∩ P2

min(π1, π2)

Idempotent rule in
belief function frame

idempotence

idempotence

axioms [2,6]

particularise [3]

gener
alise

Fig. 1. Search of idempotent merging rules

Section 2 recalls basics of belief functions and defines conjunctive merging in
this framework. Section 3 then studies to what extent the minimum rule of possi-
bility theory can be extended to the framework of belief functions. The idea is to
request that the contour function after merging be the minimum of the contour
functions of the input belief functions, what we call the strong contour function
principle. Note that a similar property holds for the unnormalized Dempster rule
with respect to the product of contour functions. In the case of the minimum
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rule, we are lead to propose a weak contour principle as the former condition
turns out to be too strong.

2 Preliminaries

This section introduces the basical tools concerning belief functions needed in
this paper: their structure,the notions of inclusions and of conjunctive merging,
as well as their link with other frameworks (possibility theory, convex sets of
probabilities).

In the whole paper, we consider that information pertains to a variable V
taking its values on a finite space V, with generic element denoted v.

2.1 Belief functions

Here, we assume that our belief state is modelled by a belief function, or, equiv-
alently, by a basic belief assignment (bba).

Definition 1 (Basic belief assignment). A basic belief assignment (bba) is
a function m from the power set 2|V| of V to [0, 1] such that

∑
A⊆V m(A) = 1.

We denote by MV the set of bba’s on 2|V|. A set A such that m(A) > 0 is
called a focal set. We denote by F the set of focal sets corresponding to bba
m, and (m,F) a complete belief structure. The number m(A) > 0 is the mass
of A. Given a bba m, belief, plausibility and commonality functions of an event
E ⊆ V are, respectively

bel(E) =
∑
A⊆E

m(A)

pl(E) =
∑

A∩E 6=∅

m(A) = 1− bel(Ec)

q(E) =
∑
E⊆A

m(A)

A belief function measures to what extent an event is directly supported by
the available information, while a plausibility function measures the maximal
amount of evidence that could support a given event. A commonality function
measures the quantity of mass that may be re-allocated to a particular set from
its supersets. The commonality function increases when bigger focal sets receive
greater mass assignments, hence the greater the commonality degrees, the less
informative is the belief function. It can be shown [19] that any of the four repre-
sentations, namely bbas, belief, plausibility and commonality functions contains
the same amount of information. That is, from the (complete) knowledge of any
of them, all the others can be retrieved by bijective transformations.

Note that in Shafer’s seminal work [19], extensively taken over by Smets in
his Transferable Belief Model [23], there are no references to any underlying
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probabilistic interpretation or framework. The bba and the associated belief
function model beliefs per se. The mass given to A measures the amount of
belief exactly given to A, that is the amount of belief that w ∈ A, without being
able to be more precise.

However, a belief structure (m,F) can also be interpreted as a convex set of
probabilities [24] P(m,F) such that Bel(A) and Pl(A) are probability bounds:

P(m,F) = {P |∀A ⊂ V, Bel(A) ≤ P (A) ≤ Pl(A)}.

Classical probability distributions are retrieved when only singletons receive pos-
itive masses. This interpretation is closer to random sets and to Dempster’s
view [4]

2.2 Possibility distributions and contour functions

A possibility distribution [26,10] is a mapping π : V → [0, 1] such that π(v) = 1
for at least one element v ∈ V. Two dual functions (respectively the possibility
and necessity function) can be defined from π: Π(A) = supv∈A π(v) and N(A) =
1 −Π(Ac). Their characteristic properties are that, for any pair A,B ⊆ V, we
have:

Π(A ∪B) = max(Π(A), Π(B)); N(A ∩B) = min(N(A), N(B)).

A contour function of a belief structure (m,F) is defined as follows

Definition 2. The contour function πm of a belief structure (m,F) is a mapping
π(m,F) : V → [0, 1] such that, for any x ∈ V,

π(m,F)(v) = pl({v}) = q({v})1,

with pl, q the plausibility and commonality functions of (m,F).

A belief structure (m,F) is called consonant when its focal sets are completely
ordered with respect to inclusion (that is, for any A,B ∈ F , we have either
A ⊂ B or B ⊂ A). In this case, the plausibility and belief functions have the
characteristic properties of respectively possibility and necessity functions, and
the information contained in the consonant belief structure can be represented
by the possibility distribution whose mapping correspond to the contour function

π(v) =
∑
v∈E

m(E).

Conversely, any possibility distribution and its associated possibility (resp. neces-
sity) function defines a unique consonant belief structure and plausibility (resp.
belief) function. If π is a possibility distribution, and if 0 = α0 ≤ α1 ≤ . . . ≤
. . . αM = 1 is the (finite) set of distinct values assumed by π over V, then the

1 Note that the equality between pl and q on singletons always holds.
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corresponding belief structure (mπ,Fπ) has, for i = 1, . . . ,M , the following M
focal sets: {

Ei = {v ∈ X|π(v) ≥ αi}
m(Ei) = αi − αi−1,

(1)

with m(Ei) the mass given to Ei.
For any belief structure (m,F), the contour function can be seen as a (pos-

sibly unnormalized) possibility distribution, and is a trace of the whole belief
structure (m,F) restricted to singletons. Except when (m,F) is consonant, the
contour function represents only part of the information contained in (m,F).
The contour function is therefore a summary, easier to manipulate than the
whole random set.

2.3 Inclusion and information orderings between belief functions

Inclusion relationships are natural tools to compare the informative contents of
set-valued uncertainty representations. LetA,B ⊆ V be two sets, (mA,FA), (mB ,FB)
the corresponding belief structures and πA, πB the corresponding possibility dis-
tributions. Recall that a set A can be represented by the belief structure such
that m(A) = 1 and the possibility distribution π(v) = 1 if v ∈ A, zero otherwise.
In this crisp case, all the following expressions are equivalent:

– A ⊆ B,
– ∀E ⊆ V, plA(E) ≤ plB(E),
– ∀E ⊆ V, qA(E) ≤ qB(E),
– ∀E ⊆ V, πA(v) ≤ πB(v).

When working with belief functions and bbas, all these equivalent notions have
different counterparts [9], leading to the definitions of x-inclusions, with x ∈
{pl, q, s, π}.

Definition 3 (pl-inclusion). A belief structure (m1,F1) defined on V is said
to be pl-included in another belief structure (m2,F2) defined on V if and only
if, for all A ⊆ V,

pl1(A) ≤ pl2(A)

and this relation is denoted by (m1,F1) vpl (m2,F2) and by (m1,F1) @pl

(m2,F2) if the above inequality is strict for at least one event.

We also have that (m1,F1) is pl-included in (m2,F2) if and only if P(m1,F1) ⊆
P(m2,F2), thus the notion of pl-inclusion is coherent with the interpretation of
belief functions as probability bounds. Note that, due to the duality relation
between plausibility and belief functions, pl-inclusion also covers the case of
bel-inclusion.

Definition 4 (q-inclusion). A belief structure (m1,F1) defined on V is said
to be q-included in another belief structure (m2,F2) defined on V if and only if,
for all A ⊆ V,

q1(A) ≤ q2(A)
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and this relation is denoted by (m1,F1) vq (m2,F2) and by (m1,F1) @q (m2,F2)
if the above inequality is strict for at least one event.

As the commonality function is higher when higher masses are given to bigger
sets, the notion of q-inclusion also allows to compare informative contents, but
neither does imply nor is implied by the pl-inclusion [9]. Also, existing results
tend to show that the notion of q-inclusion is more natural when working within
the TBM interpretation [14,7].

Definition 5 (s-inclusion). A belief structure (m1,F1) defined on V with F1 =
{E1, . . . , Eq} is said to be s-included in another belief structure (m2,F2) defined
on V with F2 = {E′1, . . . , E′p} if and only if there exists a non-negative matrix G
of generic term gij such that

for j = 1, . . . , p,
q∑
i=1

gij = 1,

gij > 0⇒ Ei ⊆ E′j ,
p∑
j=1

m2(E′j)gij = m1(Ei).

This relation is denoted by (m1,F1) vs (m2,F2) and by (m1,F1) @s (m2,F2) if
there is at least a pair i, j such that gij > 0 and Ei ⊂ Ej.

The term gij is the proportion of the focal set E′j that "flows down" to focal
set Ei. In other words, (m1,F1) is s-included in (m2,F2) if the mass of any focal
set E′j of (m2,F2) can be redistributed among subsets of E′j in (m1,F1).

Definition 6 (π-inclusion). A belief structure (m1,F1) defined on V is said
to be π-included in another belief structure (m2,F2) defined on V if and only if,
for all x ∈ V,

π(m1,F1)(x) ≤ π(m2,F2)(x)

and this relation is denoted (m1,F1) vπ (m2,F2) and by (m1,F1) @π (m2,F2)
if the above inequality is strict for at least one element.

The notion of π-inclusion is the extension to general belief structures of the
notion of specificity between possibility distributions (a possibility distribution
π1 is more specific, or included in another possibility distribution π2 if π1 ≤ π2).

Since notions of inclusion allow to compare informative contents, we will also
say, when (m1,F1) vx (m2,F2) ((m1,F1) @x (m2,F2)) with x ∈ {pl, q, s, π},
that (m1,F1) is (strictly) x-more committed than (m2,F2). The following im-
plications hold between these notions of inclusion [9]:

(m1,F1) vs (m2,F2)⇒
{

(m1,F1) vpl (m2,F2)
(m1,F1) vq (m2,F2)

}
⇒ (m1,F1) vπ (m2,F2).

(2)
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As classical inclusion does with crisp sets, each of these notions induces a partial
ordering between elements ofMV . Note that the relation vπ only induces a par-
tial pre-order (i.e., we can have (m1,F1) vπ (m2,F2) and (m2,F2) vπ (m1,F1)
with (m1,F1) 6= (m1,F1)), while the others induce partial orders (i.e., they are
antisymmetric). This is due to the fact that the notion of π-inclusion is based
on the contour function that does not, in general, contain all the information
contained in a belief structure. Note that, since notions of pl, q and s-inclusion
are antisymmetric, we also have

(m1,F1) @s (m2,F2)⇒
{

(m1,F1) @pl (m2,F2)
(m1,F1) @q (m2,F2)

(3)

The following example illustrates the fact that π-inclusion not being antisym-
metric, we can have strict q-inclusion and pl-inclusion while having equality for
these two functions on singletons.

Example 1. Consider the two following possibility distributions π1,π2, expressed
as belief structures (m1,F1), (m2,F2) on the domain V = {x1, x2, x3}

(m1,F1) (m2,F2)
Focal sets Mass Focal sets Mass
E11 = {x2} 0.5 E21 = {x2, x3} 0.5

E12 = {x1, x2, x3} 0.5 E22 = {x1, x2} 0.5

These two random sets have the same contour function, while (m1,F1) @pl

(m2,F2) and (m2,F2) @q (m1,F1).

The above example can be generalized, in the sense that if we have two belief
functions m1,m2 such that m1 @q m2 and m1 @q m2, we have the following
implications:

m1 @q m2 ⇒ m1 vπ m2,

m2 @pl m1 ⇒ m2 vπ m1,

and this implies that m1 =π m2.
If belief structures are consonant, then all the notions of pl, q, s and π-

inclusion reduce to the same definition (that is, the one of π-inclusion).
Recently, Denoeux [6] has introduced other notions of inclusion, namely the

w-inclusion and v-inclusion, based on Smets canonical decomposition [21]. They
also induce partial orders between belief functions. Given a belief structure
(m,F) for which m(V) 6= 0, the w-transformation affects to each subset A ⊆ V
the value w(A) ∈ (0,+∞) such that

w(A) =
∏
B⊇A

q(B)|B|−|A|+1.

A belief structure (m1,F1) is said to be w-included in another belief structure
(m2,F2) if w1(A) ≤ w2(A) for any A ⊆ V. When (m,F) is consonant and
has π for contour function, if we note πk = π(vk) with a ranking of elements
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V = {v1, . . . , vK} such that 1 = π1 ≥ π2 ≥ . . . ≥ πK , and Ak = {v1, . . . , vk}, its
w-transformation is

w(A) =
{ πk+1

πk
, A = Ak, 1 ≤ k < K,

1, otherwise.

We will not consider these orderings here, for the reason that the notion of w-
inclusion does not reduce to the notion of π-inclusion when considering only
consonant random sets, as shows the next example.

Example 2. Consider the two possibility distributions π1, π2 on space V = {v1, v2, v3, v4}
summarized in the following table

π1

v1 v2 v3 v4
0.1 0.5 0.6 1

π2

v1 v2 v3 v4
0.15 0.8 1 1

we do have π1 @ π2 but w1({v1, v2}) = 5/6 > w2({v1, v2}) = 8/10 and w1({v1, v2, v3}) =
6/10 < w2({v1, v2, v3}) = 1, hence the corresponding random set are w-incomparable.

As all these notions induce partial orders between belief structures, it is some-
times desirable (for example, when one has to select a single least-specific belief
structure among a set of such structures) to use alternative criteria inducing
complete ordering between belief structures. One of such criteria, that is used
in other approaches to the cautious merging of belief function [14,7], is the ex-
pected cardinality of a belief structure (m,F), that we denote by C|(m,F)| and
whose value is

C|(m,F)| =
∑
E∈F

m(E)|E|,

which is also equal to the cardinality of the contour function π(m,F) [12], that is

C|(m,F)| =
∑
x∈V

π(m,F)(x). (4)

Yet other information comparison measures exist [2,17], but since our aim is
to generalize merging rules coming from possibility theory, expected cardinality
appears to be the best choice, due to the Equality (4). We can thus define the
notion of cardinality specificity:

Definition 7 (C-specificity). A belief structure (m1,F1) defined on V is said
to be more C-specific than another belief structure (m2,F2) defined on V if and
only if we have the inequality

C|(m1,F1)| ≤ C|(m2,F2)|

and this relation is denoted (m1,F1) vC (m2,F2) and by (m1,F1) @C (m2,F2)
if the above inequality is strict.
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The following lemma also indicates that the order between belief structures
induced by C-specificity is in agreement with the other inclusion notions used in
this paper.

Lemma 1. Let (m1,F1),(m2,F2) be two random sets. Then, the following im-
plications holds:

I (m1,F1) @π (m2,F2)→ (m1,F1) @C (m2,F2)
II (m1,F1) @s (m2,F2)→ (m1,F1) @C (m2,F2)
III (m1,F1) @pl (m2,F2)→ (m1,F1) vC (m2,F2)
IV (m1,F1) @q (m2,F2)→ (m1,F1) vC (m2,F2)

Proof. I Immediate, since π(m1,F1) < π(m2,F2) implies the same strict inequal-
ity between C|(m1,F1)| and C|(m2,F2)| (see Eq. (4))

II Since s-inclusion implies π-inclusion, we have (m1,F1) @s (m2,F2) →
(m1,F1) vC (m2,F2). To see that the second inequality is strict, sim-
ply consider the fact that, if (m1,F1) @s (m2,F2) and if we consider
F1 = {E1, . . . , Eq} and F2 = {E′1, . . . , E′p}, then

C|(m1,F1)| =
q∑
i=1

m1(Ei)|Ei| =
q∑
i=1

p∑
j=1

m2(E′j)gij |Ei|. (5)

Since Ei ⊆ E′j if gij > 0, and at least one gij > 0 such that Ei ⊂ E′j ,
the sum (5) is strictly lower than C|(m2,F2)| =

∑p
j=1m2(E′j)|E′j |. This is

sufficient to show that (m1,F1) @C (m2,F2) (due to Eq (4)).
III The implication is immediate, given Eq (4) and the fact that pl1 ≤ pl2.

Example 3 indicates that two strictly pl-included belief structures can have
equal cardinality.

IV Immediate, with the same arguments applied to q-inclusion.

2.4 Conjunctive merging and least commitment

Let (m1,F1), (m2,F2) be two belief structures defined on V, supplied by two, not
necessarily independent, sources (e.g., two experts potentially sharing some com-
mon opinions, two physical models based on similar equations). We define a belief
structure (m∩,F∩) resulting from a conjunctive merging of (m1,F1), (m2,F2)
as the result of the following procedure [7]:

1. A joint mass distribution m is built on V2, having focal sets of the form
A×B where A ∈ F1, B ∈ F2 and preserving m1,m2 as marginals. It means
that

∀A ∈ F1, m1(A) =
∑
B∈F2

m(A,B), (6)

∀B ∈ F2, m2(B) =
∑
A∈F1

m(A,B).
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2. Each joint mass m(A,B) is allocated to the subset A ∩B only.

We call a merging rule satisfying these two conditions conjunctive2, and de-
noteM12 the set of conjunctively merged belief structures. The idea behind the
conjunctive approach is to gain as much information as possible from the fusion
process. Not every belief structure (m∩,F∩) obtained by conjunctive merging is
normalized (i.e. one may getm(∅) 6= 0). In this paper, unless stated otherwise, we
do not assume that a conjunctively merged belief structure has to be normalised.
We also do not renormalise such belief structures, because, after renormalisation,
they no longer satisfy Eq. (6), and renormalisation is usually not required when
working with possibility distributions. A belief structure (m∩,F∩) on V obtained
by a conjunctive merging rule is a specialisation of both (m1,F1) and (m2,F2)
, and M12 is a subset of all belief structures that are specialisations of both
(m1,F1) and (m2,F2), that is

M12 ⊆ {m ∈MV |i = 1, 2, m vs mi},

with the inclusion being usually strict3. Regarding the belief structures inside
M12, three situations can occur:

1. M12 contains only normalized belief functions. It means that ∀A ∈ F1, B ∈
F2, A ∩ B 6= ∅. Only in that case does the result of merging by Dempster
rule of combination is normalized. The two bbas are said to be logically
consistent.

2. M12 contains both subnormalized and normalized bbas. It means that ∃A,B,A∩
B = ∅ and that the marginal-preservation Equations (6) have solutions which
allocate zero mass m(A,B) to such A×B. The two bbas are said to be non-
conflicting. Chateauneuf [3] have shown that being non-conflicting is a suffi-
cient and necessary condition for P(m1,F1) ∩ P(m2,F2) to be non-empty, and
that for each subset A ⊆ V, the lower probability P (A) of P(m1,F1)∩P(m2,F2)

is equal to the lowest belief measure on A induced by all normalized belief
structures inM12.

3. M12 contains only subnormalized belief functions. This situation is equiva-
lent to having P(m1,F1) ∩P(m2,F2) = ∅. The two bbas are said to be conflict-
ing.

Note that, in the first situation, the lower probability of P(m1,F1) ∩ P(m2,F2) is
equal to the lowest belief measures induced by the set of all belief structures in
M12 (since they are all normalised).

When both sources can be considered as independent, the TBM conjunctive
rule consists of taking the merged belief structure inside M12 that take the
product of masses (i.e., m(A,B) = m1(A) ·m2(B) in Equations (6)) as the joint
mass.
2 A disjunctive merging rule can be defined likewise, changing ∩ into ∪.
3 Consider, for example, the empty belief structuresm1(V) = m2(V) = 1 as marginals.
The set of specialisation of both of them is every possible belief structure, while only
the empty one can be reached by the conjunctive merging defined in this paper



11

However, when sources cannot be considered as independent and when the
dependence structure between them is not well known, a common practice is
to use the principle of least-commitment to build the merged belief structure.
That is, to adopt a cautious attitude. Let us note Mvx

12 the set of all maximal
elements inside M12 when they are ordered with respect to x-inclusion, with
x ∈ {s, pl, q, π,C}. Least-commitment principle then often consists of choosing a
given x and picking a particular element insideMvx

12 that also satisfies a number
of desired properties.

Since idempotence is often considered as a natural property to satisfy when
cautiously merging multiple sources of information, another option is to search
how to adapt idempotent rules coming from other frameworks to the merging
of belief structures. Chateauneuf [3] has already explored the links between the
natural idempotent rule used to merge sets of probabilities and belief structures.
In the rest of the paper, we will study how to extend the natural idempotent
and cautious minimum rule originating from possibility theory, and under which
conditions the conjunctive merging of belief structures can satisfy such an ex-
tension.

3 Extending possibilistic idempotent rule

If π1, π2 denote two possibility distributions, the natural conjunctive idempotent
rule between these two distributions is the minimum min(π1, π2). It can also be
seen as the most cautious, as the minimum is the most conservative of all t-
norms [16].

Now, let us consider two random sets (m1,F1), (m2,F2) and their respective
contour functions π(m1,F1), π(m2,F2). First notice the following property:

Proposition 1 (s-covering). Let (m1,F1), (m2,F2) be two belief structures.
Then, the following inequality holds for any v ∈ V:

max
(m,F)∈M12

π(m,F)(v) ≤ min(π(m1,F1)(v), π(m2,F2)(v)). (7)

Proof. Since any element (m,F) inM12 are s-included in (m1,F1) and (m2,F2),
and s-inclusion implies π-inclusion (Equation (2)), we have for any x ∈ V
and any (m,F) ∈ M12 that π(m,F)(v) ≤ min(π(m1,F1)(v), π(m2,F2)(v)) with
π(m,F), π(m1,F1), π(m2,F2) the contour functions of (m,F), (m1,F1), (m2,F2). Since
this is true for all elements ofM12, this is enough to prove (7).

It is known [18] that the same inequality holds for sets of probabilities, since,
given two such sets P1,P2, their respective upper probabilities P 1, P 2, their
intersection P1 ∩ P2 and the induced lower probability P 12, we have, for all
events A ⊆ V, P 12(A) ≤ min(P 1(A), P 2(A))4. Considering the idempotent rule
4 Note that the present situation is a bit different, since merging of probability sets
do not allow for unnormalized belief structures, while we do allow for such belief
structures here.
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of possibility theory and this property, it makes sense to ask for inequality (7)
to become an equality. We now study two different ways to formulate this re-
quirement on conjunctively merged belief structures.

3.1 Strong contour function principle (SCFP)

Let us first start with the strongest requirement.

Definition 8 (Strong contour function principle (SCFP)). Let (m1,F1), (m2,F2)
be two belief structures andM12 the set of conjunctively merged belief structures.
Then, an element (m1∧2,F1∧2) inM12 is said to satisfy the strong contour func-
tion principle if, for any v ∈ V,

π(m1∧2,F1∧2)(v) = min(π(m1,F1)(x), π(m2,F2)(v)), (8)

with π(m1∧2,F1∧2)(v) the contour function of (m1∧2,F1∧2)(v).

That is, we require that the selected merged belief structure should have a
contour functions equal to the minimum of the two marginal contour functions.
It is clearly an extension of the minimum rule of possibility theory, since we
retrieve it if both (m1,F1), (m2,F2) are consonant.

Also observe that, given Eq (4), a merged belief structure satisfying the SCFP
would also have a maximal expected cardinality among elements of M12, and
hence be coherent with previous approaches [7] studying the maximisation of
expected cardinality as a choice criteria for the merged belief structure.

Let us first assume that the two belief structures (m1,F1), (m2,F2) are such
that the SCFP can be satisfied. In this case, satisfying SCFP also imply satisfying
the two following properties.

Proposition 2 (idempotence). Let (m1,F1) = (m2,F2) = (m,F) be two
identical belief structures. Then, the unique element in M12 satisfying Equa-
tion (8) is

(m1∧2,F1∧2) = (m,F).

Proof. That (m,F) is a solution of Equation (8) is immediate, since for any
v ∈ V we have pl1({v}) = pl2({v}) = pl({v}).

We must now show that any other belief structure inM12 is not a solution
of (8). Consider a belief structure (m′ ,F′) that is a specialization of (m,F) and
is not (m,F). Let F1 = {E1, . . . , Ep} be the focal sets of (m,F). If (m′ ,F′) is
not equal to (m,F), this implies that there are at least two distinct focal sets
Ei, Ej such that a non-null weight qij is given to Ei ∩ Ej . Since Ei and Ej are
distinct, there is at least an element x ∈ X such that x 6∈ Ei ∩Ej , while x ∈ Ei
or x ∈ Ej , and for that element we have pl1(x) ≥ pl′(x) − qij . Consequently,
Equation (8) can only be satisfied if we take (m1∧2,F1∧2) = (m,F).

This indicates that the SCFP is a sufficient condition to ensure that a merging
rule is idempotent.
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Proposition 3 (s-coherence). Let (m1,F1) be (strictly) s-included in (m2,F2),
that is (m1,F1) @s (m2,F2). Then, the unique element inM12 satisfying Equa-
tion (8) is

(m1∧2,F1∧2) = (m1,F1).

Proof. First, if (m1,F1) @s (m2,F2), this means that pl1({v}) ≤ pl2({v}) for all
v ∈ V, with a strict inequality for at least one element. Second, if (m1,F1) @s

(m2,F2), then (m1,F1) is a specialisation both of itself and (m2,F2), hence it
is inM12. Consequently, it is a solution of Equation (8).

To show that it is the unique solution insideM12, we can advocate a similar
argument as in the previous proof.

This property indicates that satisfying the SCFP is also coherent with the no-
tion of specialisation, that is the notion of inclusion that we consider as the most
sensible when extending possibilistic calculus to the belief functions framework.
To see that Proposition 3 do not extend to the notions of pl- and q-inclusions,
consider Example 3, the fact that one of them is either strictly pl- or q-included
in the other and that none of these two belief functions can be the solution of a
conjunctive merging satisfying Eq. 6.

The case of consonant belief structures Let π1, π2 be two possibility distri-
butions and (m1,F1), (m2,F2) be the corresponding consonant belief structures.
In this case, it is known [15] that the minimum of distributions π1, π2 can be
retrieved by a bba insideMm1∩m2,V where depdendency between focal set pre-
cision is assumed. Let 0 = α0 ≤ α1 ≤ . . . ≤ αM be the distinct values taken
by both π1, π2 over V, then min(π1, π2) correspond to the conjunctively merged
belief structure (m1∧2,F1∧2) that, for i = 1, . . . ,M , has focal sets{

Ei = (Ei,1 ∩ Ei,2),
m1∧2(Ei) = αi − αi−1,

(9)

with Ei,j = {v|πj(v) ≥ αi}.
This merged belief structure has a maximal cardinality, meaning that it is

one of the s-least committed inside Mm1∩m2,V (i.e., it is among the elements
of Mvs

12 ). Using previous results [14,13], it is also the single least q-committed
elements amongMm1∩m2,V (i.e.,Mvq

12 is reduced to a single element).
The next example, which completes Example 3, indicates that Mvs

12 is not
necessarily reduced to a single element.

Example 3. Consider the two following possibility distributions π1,π2, expressed
as belief structures (mπ1 ,Fπ1), (mπ2 ,Fπ2)

π1 = (mπ1 ,Fπ1) π2 = (mπ2 ,Fπ2)
Focal sets Mass Focal sets Mass
{v0, v1, v2} 0.5 {v2, v3, v4} 0.5

{v0, v1, v2, x3, v4} 0.5 {v1, v2, v3, v4, v5} 0.5
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The two belief structures (m1,F1), (m2,F2) of Example 3 can be obtained by
conjunctively merging these two marginal belief structures, and none of the
two belief structures in Example 3 is s-included in the other, while we do have
(m2,F2) @q (m1,F1)

Note that the merged belief structure satisfying the SCFP is usually unnor-
malized, except when there is at least one element v in V such that π1(v) =
π2(v) = 1 (that is, (m1,F1), (m2,F2) are logically consistent).

The case of probabilistic belief structures We now consider another special
case where the two belief structures are equivalent to probability distributions
over V, that is when only singletons are focal sets.

Consider an arbitrary index over elements of V = {v1, . . . , vn} with |V| = n.
Let p1, p2 denote two marginal probability distributions, pj,i = pj(vi) for j =
1, 2, i = 1, . . . , n and (m1,F1), (m2,F2) their equivalent belief structures. We
then have the following proposition:

Proposition 4. Let (m1,F1), (m2,F2) be two belief structures equivalent to prob-
ability distributions p1, p2 defined on V = {v1, . . . , vn}. Then, the unique element
(m1∧2,F1∧2) inM12 satisfying Equation (8) has, for i = 1, . . . , n, a joint mass

m1∧2(vi × vi) = min(p1,i, p2,i).

Proof. First, since focal sets are singletons, the only joint masses satisfying
Eq. (6) which will allocate a positive mass to non-empty focal sets are of the
type m1∧2(vi× vi), i = 1, . . . , n. Also note that the focal sets of any conjunctive
merging will also be singletons.

Given the constraints of Eq. (6), the maximal joint mass given to xi × xi,
and therefore allocated to xi is m1∧2(xi × xi) = min(p1,i, p2,i). For any element
xi ∈ V, we then have

pl1∧2(xi) =
∑
E⊆V

m1∧2(E) = m1∧2(xi) = min(p1,i, p2,i).

Since we also have plj(xi) = pj,i for j = 1, 2, this conjunctively merged belief
structure, which always exists, satisfy the SCFP. It is also the only one to satisfy
this principle, since any other allocation would simply give more mass to the
empty set (and therefore be a strict specialisation of (m1∧2,F1∧2)).

In this case, (m1∧2,F1∧2) is also the unique x-least committed element in
M12, with x ∈ {pl, q, s, π}. (m1∧2,F1∧2) is also unnormalized, unless p1 = p2

(in which cases SCFP enforces idempotence).

Satisfying the SCFP in general General necessary and sufficient condi-
tions under which the merged bba has a contour function satisfying SCFP have
been found by Dubois and Prade [11], however they can be difficult to check.
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Constraining the marginal belief structures to be either logically consistent (sit-
uation 1), non-conflicting (situation 2) or conflicting (situation 3), as well as
requiring the conjunctively merged belief structure to be normalised are condi-
tions that are easier to satisfy.

Let us first explore the most constraining case, that is the one where marginal
belief structures are logically consistent (note that, in this case, all conjunctively
merged belief structures are normalised). The next example indicates that the
SCFP cannot always be satisfied, even in such a restricted case.

Example 4. Let us consider the two belief structures (m1,F1), (m2,F2) of Ex-
ample 3 as our marginal belief structures. They are logically consistent, and if
there is a belief structure (m1∧2,F1∧2) inM12 that can satisfy SCFP, this belief
structure should have the following contour function

pl1∧2(v1) = 0.5 pl1∧2(v2) = 1 pl1∧2(v3) = 0.5

and an expected cardinality C|(m1∧2,F1∧2)| of 2.
As expected cardinality is a linear function, as well as the constraints de-

scribed by Eq. 6, we can easily search for the maximal expected cardinality that
can attain a conjunctively merged belief structure given its marginal. The linear
programming problem corresponding to our example is

maxm1∩2({v2}) + 2.m1∩2({v2, v3}) +m1∩2({v2}) + 2.m1∩2({v1, v2})

under the constraints
m1∩2({v2}) +m1∩2({v2, v3}) = 0.5
m1∩2({v2}) +m1∩2({v1, v2}) = 0.5
m1∩2({v2}) +m1∩2({v2}) = 0.5

m1∩2({v2, v3}) +m1∩2({v1, v2}) = 0.5
m1∩2({v2}) +m1∩2({v2, v3}) +m1∩2({v2}) +m1∩2({v1, v2}) = 1

The maximal value of expected cardinality in the above problem is 1.5, and
is given, for example, by m1∩2({v2, v3}) = 0.5, m1∩2({v2}) = 0.5.

Since this expected cardinality is lower than the expected cardinality that
should reach a conjunctively merged belief structure satisfying the SCFP. This
indicates that, even when the conjunctively merged belief structure has to be
normalised, the SCFP cannot be always satisfied. The two next examples indi-
cates that the SCFP cannot always be satisfied also when the marginal random
sets are non-conflicting or conflicting.

Example 5. Let us consider the space V = {v1, v2, v3} and the two non-conflicting
marginal random sets (m1,F1), (m2,F2) summarized in the table below.

Set {v1} {v2} {v3} {v1, v2} {v1, v3} {v2, v3} X
m1 0.3 0 0 0 0 0.4 0.3
m2 0.2 0.1 0.1 0.2 0.2 0.1 0.1
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Their contour functions and their minimum are summarized in the next table.

Element vi ∈ X π1(vi) π2(vi) min(π1, π2)
v1 0.6 0.7 0.6
v2 0.7 0.5 0.5
v3 0.7 0.5 0.5

The expected cardinality of this minimum is 1.6. However, the solution of
the linear program computing the maximal expected cardinality reached by an
element ofM12 has the value 1.5 as solution. Therefore, there is no element in
M12 satisfying the SCFP for this example.

Example 6. Let us then consider the two conflicting random sets (m1,F1), (m2,F2)
summarised below.

(m1,F1) (m2,F2)
Focal sets Mass Focal sets Mass
E11 = {v2} 0.5 E21 = {v1v2, v3} 0.5
E12 = {v3} 0.5 E22 = {v1} 0.5

Their contour functions and their minimum are summarized in the next table.

Element vi ∈ X π1(vi) π2(vi) min(π1, π2)
v1 0 1 0
v2 0.5 0.5 0.5
v3 0.5 0.5 0.5

This time, the expected cardinality of the minimum is 1, while the maximum
expected cardinality reachable by an element of M12 is 0.5 (by distributing
m2({v1v2, v3}) to either v2 or v3.

All these examples indicates that the SCFP, even if it extends the cautious
merging of possibility distributions to belief structures, is a strong requirement
difficult to satisfy in general. A possible alternative is to search for subsets of
conjunctively merged belief structures satisfying a weaker contour function prin-
ciple, thus working with sets of belief functions rather than with a single one.
This goes in the sense of propositions made by other authors in order to deal
with situations where dependencies or exact features of belief structures are not
precisely known [1,25,5]. Such an alternative is explored in the next section.

Table 1 summarizes in which cases the SCFP can always be satisfied. It shows
that, except for specific kind of belief structures, the SCFP is difficult to satisfy
in general.

3.2 Weak contour function principle (WCFP)

In this section, we still assume that we start from marginal random sets (m1,F1), (m2,F2)
coming from sources whose dependencies is ill-known. While we still require the
result of their conjunctive merging to coincide on singletons with the minimum
of the contour functions π1, π2, we no longer require the result of the merging to
be a single belief structure.
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```````````Situation
Constraints Consonant Probabilistic m1∩2(∅) = 0 unconst.

Logically consistent
√ √

× ×

Non-conflicting
√ √

× ×

Conflicting
√ √

N.A. ×

Table 1. Satisfiability of SCFP given (m1,F1), (m2,F2).
√
: always satisfiable. ×: not

always satisfiable. N.A.: Not Applicable

Definition 9 (WCFP). Consider two belief structures (m1,F1), (m2,F2) and
M12 the set of conjunctively merged belief structures. Then, a subsetM ⊆M12

is said to satisfy the weak contour function principle if, for any v ∈ V,

max
(m,F)∈M

πm(v) = min(πm1(v), πm2(v)), (10)

Any marginal random sets for which the SCFP can be satisfied also satisfy
the WCFP. However, what we are searching for are subsets ofM12 that always
satisfy the WCFP.

Subsets of normalised merged belief functions A first subset of con-
junctively merged belief structures that is interesting to explore is the one
where we restrict ourselves to normalised merged belief structures (that is, all
(m∈,F∈)M12 such that m(∅) = 0). As the lower measure induced by this subset
is equal to the lower probability of the intersection of the sets of probabilities in-
duced by the marginal belief structures, we will denote it byMP1∩P2,V , with P1

and P2 the sets of probabilities respectively induced by (m1,F1) and (m2,F2).
Note that linear programming techniques can be used to check that a subset

of merged belief functions satisfy the WCFP, as long as constraints imposed on
belief structures of the subset are linear. A linear program can then be written
for each v ∈ V, to check whether Eq. (10) is satisfied.

As considering the subset of normalised conjunctively merged belief structure
is less constraining than selecting only one of them, there will be some cases
for which the SCFP cannot be satisfied, while the WCFP will be, even if we
restrict ourselves to normalised belief structure. For instance, it is impossible
to satisfy the SCFP for the two marginal belief structures of Example 5, while
it is possible to satisfy the WCFP by restricting the subset of merged belief
structures toMP1∩P2,V . The next example shows that there are cases where the
WCFP cannot be satisfied when we consider the subsetMP1∩P2,V .

Example 7. Consider the two marginal belief structure (m1,F1), (m2,F2) on
V = {v1, v2, v3} such that

m1({v1}) = 0.5; m1({v1, v2, v3}) = 0.5,
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and
m2({v1, v2}) = 0.5; m2({v3}) = 0.5.

The minimum of contour functions πmin = min(π1, π2) is given by πmin(vi) = 0.5
for i = 1, 2, 3. The only merged bba m12 to be inMP1∩P2,V is

m12({v1}) = 0.5; m12({v3}) = 0.5,

for which π12(v2) = 0 < 0.5.

The above example is interesting, as it indicates that requiring coherence (i.e.,
m(∅) = 0) while conjunctively merging uncertain information can be, in some
situation, too strong a requirement (in particular when dependencies between
sources is ill-known). In particular, in the above example, the element v2 is
considered as impossible by the intersection of sets of probabilities, while both
sources consider v2 as possible.

Subsets of s-least committed merged belief structures Another possible
solution is to consider a subset coherent with the least commitment principle.
That is, given two belief structures (m1,F1), (m2,F2), we consider the subsets
Mvx

12 , with x ∈ {s, pl, q, π}. Recall that

Mvx
12 = {(m,F) ∈M12| 6 ∃(m,F)′ ∈MP1∩P2,V , (m,F) @x (m,F)′}.

The following proposition shows that the subset of s-least committed belief struc-
tures inMP1∩P2,V always satisfy the WCFP

Proposition 5. Let (m1,F1), (m2,F2) be two marginal belief structure on V.
Then, the subsetMvs

12 satisfy the WCFP, in the sense that

max
(m,F)∈Mvs

12

π(m,F)(v) = min(π1(v), π2(v)),

with π1, π2, π(m,F) the contour functions of, respectively, (m1,F1), (m2,F2), (m,F).

Proof. To prove this proposition, we will simply show that for any v ∈ V there
is at least one merged belief structure (mv,Fv) inM12 such that π(mv,Fv)(v) =
min(π1(v), π2(v)). Then, either this merged belief structure is s-least commit-
ted, and the problem is solved, or there is a s-less committed belief structure
(mx,Fx)′, for which

min(π1(v), π2(v)) ≥ π(mv,Fv)′(v) ≥ π(mv,Fv)(v),

the first inequality following from Proposition 1 and the second from the defini-
tion of s-inclusion.

We now have to prove that it is possible to build a merged belief structure
(mv,Fv) for any given v ∈ V such that π(mv,Fv)(v) = min(π1(v), π2(v)). Without
loss of generality, consider that, for v, π1(v) =

∑
v∈Em1(E) ≤

∑
v∈E′ m2(E′) =

π2(v). It is then always possible to transfer part of the masses m2(E′), v ∈ E′ ∈
F2 to subsets E ∩ E′ containing v, so as to ensure

∑
v∈E∩E′ mv(E × E′) =∑

E∈Fv,1
m1(E), while respecting Eq. (6). The same reasoning can be applied

for all v ∈ V to finish the proof.
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Note that the proof of Proposition 5 also indicates that, in all cases, one can
always satisfy the WCSP by choosing a set of |V| merged belief structures, each
of them equal to the minimum of the marginal contour functions for one element
x ∈ V. However, how to pick them again become a question. Another interesting
result follows from Proposition 5.

Corollary 1. Let (m1,F1), (m2,F2) be two marginal belief structure on V. Then,
the subsetsMvx

12 for x = {pl, q, π} satisfy the WCFP, in the sense that

max
(m,F)∈Mvx

12

π(m,F)(x) = min(π1(x), π2(x)),

with π1, π2, π(m,F) the contour functions of, respectively, (m1,F1), (m2,F2), (m,F).

Proof. Given the implications between notions of inclusions of belief structures,
it is clear that, any element inMvx

12 with x = {pl, q, π} is also inMvs
12 . However,

there are some elements ofMvs
12 that are not inMvx

12 . What we have to do is to
show that, if one element is suppressed, then this element is of no use to satisfy
Proposition 5. Let us consider two such elements m1, m2 that are inMvs

12 (i.e.,
they are s-incomparable) but are such that m1 vx m2, hence m1 is suppressed
fromMvx

12 . However, for any x ∈ {pl, q, π}, we do have (see Lemma 1)

m1 vx m2 ⇒ π1 ≤ π2,

with π1, π2 the contour functions of m1, m2. π1 ≤ π2 ensures that m1 is of no
use when taking the maximum of all contour functions to satisfy the WCFP.

Corollary 2. Let (m1,F1), (m2,F2) be two marginal belief structure on V. Then,
if any of the subsetsMvx

12 with x = {s, pl, q, π} is reduced to a singleton (mx,Fx),
then this element satisfy the SCFP.

This is, for instance, the case with Mvq
12 when both (m1,F1), (m2,F2) are

consonant. As for SCFP, Table 2 summarises for which subset of merged belief
structure the WCFP is always satisfiable.

XXXXXXXXXSituation
SubsetMP1∩P2,V M

vs
12 M

vpl
12 Mvq

12 M
vπ
12

Logically consistent
√ √ √ √ √

Non-conflicting ×
√ √ √ √

Conflicting N.A.
√ √ √ √

Table 2. Satisfiability of WCFP given (m1,F1), (m2,F2).
√
: always satisfiable. ×: not

satisfiable in general. N.A.: Not Applicable
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4 Conclusions

In this paper, we have studied to what extent the idempotent rule used in possi-
bility theory to cautiously merge possibility distribution can be extended to the
more general framework of belief structures. In order to achieve such an exten-
sion, we have proposed two principles, respectively the strong and weak contour
function principle. These principles require the contour function of merged belief
structures to be equal to the minimum of the marginal contour functions.

Our results indicates that the strong version of this principle (selecting only
one merged belief structure) cannot be always satisfied, but that it is relatively
easy to satisfy it if we consider the weaker version of this principle, which allows
the result of the merging to be a set of belief structures. In this latter case,
restricting to least-committed merged belief structures appears to be a good
solution, and is coherent with the least-commitment principle.

From a practical standpoint, our results are rather negative, as they do not
lead to a cautious merging rule extending the idempotent possibilistic rule easy to
use. Thus, they do not allow to cope easily with ill-known dependencies between
information sources.

Our results have a theoretical interest, as they tends to confirm that the use
of sets of belief structures rather than of single belief structure is sometimes
desirable, particularly when dependencies are ill-known. This is in agreement
with similar treatments done with precise probabilities when dependencies be-
tween variables are not known [25]. This indicates that belief functions alone are
perhaps not always sufficient to treat some problems.

Section 3.2 also indicates that restricting ourselves to normalised merged be-
lief functions is also too constraining if we want to comply with our principles.
This indicates that requiring coherence is also perhaps too strong a requirement
in some situations. This is in agreement with the Transferable Belief Model [23]
and the open world assumption, where unnormalized belief structures are au-
thorised.

Another question that remains to be solved is to know if, given two marginal
belief structures, considering the top elements of the conjunctively merged belief
structures with respect to the complete ordering induced by expected cardinal-
ity allows to satisfy the WCFP? that is, if only the conjunctively merged belief
structures with maximal expected cardinality are considered, do they satisfy the
WCSP. Replying to this question would be interesting, since if the answer is
affirmative, this would give a practical way to extract a subset of conjunctively
merged belief functions satisfying the WCSP, by using linear programming tech-
niques to extract all those belief functions having maximal expected cardinality.
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