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ABSTRACT: Two problems often encountered in uncertainty processing (and especially in safety
studies) are the following: modeling uncertainty when information is scarce or not fully reliable, and
taking account of dependencies between variables when propagating uncertainties. To solve the first
problem, one can model uncertainty by sets of probabilities rather than by single probabilities, resorting
to imprecise probabilistic models. Iman and Conover method is an efficient and practical means to
solve the second problem when uncertainty is modeled by single probabilities and when dependencies
are monotonic. In this paper, we propose to combine these two solutions, by studying how Iman and
Conover method can be used with imprecise probabilistic models.

1 INTRODUCTION

Modeling available information about input
variables and propagating it through a model are
two main steps of uncertainty studies. The former
step consists in choosing a representation fitting
our current knowledge or information about in-
put variables or parameters, while the latter con-
sists in propagating these information through a
model (here functional) with the aim to estimate
the uncertainty on the output(s) of this model. In
this paper, we consider that uncertainty bears on
N variables X1, . . . , XN defined on the real line.
For all i = 1, . . . , N , we note xi a particular value
taken by Xi.

Sampling methods such as Monte-Carlo sam-
pling or Latin Hypercube sampling (Helton and
Davis 2002) are very convenient tools to simulate
and propagate random variablesX1, . . . , XN . Most
of the time, they consists in sampling M realiza-
tions (xj1, . . . , x

j
N), j = 1, . . . ,M of the N random

variables, thus building aM×N sample matrix S.
Each line of the matrix S can then be propagated
through a model T : RN → R. When using such
sampling technics, it is usual to assume:

1. That uncertainty on each Xi is representable
by a unique probability density pi associated
to a unique cumulative distribution Fi, with

Fi(x) = Pi([−∞, x]) =

∫ x

−∞
pi(x)dx.

2. That variables X1, . . . , XN are independent,
that is that their joint probability distri-
bution is provided by the product of the
marginal probability distributions.

In real applications, both assumptions can be
challenged in a number of practical cases: the
first when available information is scarce, impre-
cise or not fully reliable, and the second when in-
dependence between variables cannot be proved
or is clearly unrealistic. As shown in (Ferson and
Ginzburg 1996), making such assumptions when
they are not justified can lead to underestimations
of the final uncertainty on the output, possibly
leading to bad decisions.

Although there exist some very practical solu-
tions to overcome either scarceness of the informa-
tion or dependencies between variables, there are
not a lot of methods treating both problems at the
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same time. In this paper, we propose and discuss
such a method, that combines the use of simple
imprecise probabilistic representations with clas-
sical technics used to model monotonic dependen-
cies between variables (namely, Iman and Conover
method). The paper is divided in two main sec-
tions: section 2 is devoted to basics needed to un-
derstand the paper, and section 3 explains and
discusses the proposed method.

2 PRELIMINARIES

This section recalls the main principles of Iman
and Conover (Iman and Conover 1982) method
to integrate monotonic dependencies in a sam-
pling matrix and introduces possibility distribu-
tions (Baudrit and Dubois 2006) and probabil-
ity boxes (p-boxes for short) (Ferson, Ginzburg,
Kreinovich, Myers, and Sentz 2003), the two prac-
tical probabilistic models we are going to consider.
More details can be found in the references.

2.1 Integrating monotonic dependencies in sam-
pling procedures

The first problem we deal with is the integra-
tion of dependencies into sampling schemes. In the
sequel, Si,j denote the matrix element in the ith
line and jth column of S, while S·,j and Si,· re-
spectively denote the jth column and ith line of
S.

Suppose we consider two variables X, Y and
a sample (xj, yj) of size M of these two variables.
Then, if we replace the values xj and yj by their re-
spective ranks (The lowest value among xj receive
rank 1, second lowest rank 2, . . . , and similarly
for yj), their spearman rank correlation coefficient
rs, which is equivalent to the Pearson correlation
computed with ranks, is given by

rs = 1−

(
6
∑M

j=1 d
2
j

M(M2 − 1)

)

with dj the difference of rank between xj and yj.
Spearman correlation rs have various advantages:

i it allows to measure or characterize monotonic
(no necessarily linear) dependencies between
variables

ii it depends only on the ranks, not on the
particular values of the variables (i.e. it is
distribution-free).

Although Spearman correlations rank are not able
to capture all kinds of dependencies, they remain
nowadays one of the best way to elicit dependency
structures (Clemen, Fischer, and Winkler 2000).

Given a sample matrix S and a N × N tar-
get rank correlation matrix R (e.g. elicited from
experts), Iman and Conover (Iman and Conover
1982) propose a method to transform the matrix
S into a matrix S∗ such that the rank correlation
matrix R∗ of S∗ is close to the target matrix R.
This transformation consists in re-ordering the el-
ements in each column S·,j of S, without changing
their values in S, so that the result is the matrix
S∗. The transformation consists in the following
steps:

1. Build a M × N matrix W whose N
columns are random re-orderings of the vec-
tor (a1, . . . , aM), where ai = φ−1(i/(M+1)),
φ−1 being the inverse of a standard normal
cumulative distribution, that is

∀x, φ(x) =
1√
2π

∫ x

−∞
exp

(
−u

2

2
du

)
.

Let C be the N × N correlation matrix as-
sociated to W .

2. Build a lower triangular N × N matrix G
such that G C G′ = R with G′ the trans-
pose of G. This can be done in the following
way: use Cholesky factorization procedure to
decompose C and R into C = C4 C ′4 and
R = R4 R′4, with both C4, R4 lower tri-
angular matrix (due to the fact that correla-
tion matrices C,R are, by definition, positive
definite and symmetric). Then, G is given
by G = R4 C−41 and the transpose follows.
Note thatG is still a lower triangular matrix.

3. Compute the M ×N matrix W ∗ = W G′.

4. In each column S·,j of the original sample
matrix, re-order the sampled values so that
they are ranked as in the column W ∗

·,j, thus
obtaining a matrix S∗ whose rank correla-
tion matrix R∗ is close to R (but not force-
fully equal, as for a given numberM of sam-
ples, rank correlations coefficients can only
assume a finite number of distinct values).

This method allows to take account of mono-
tonic dependencies between the variables in sam-
pling schemes (and, therefore, in the subsequent
propagation), without making any assumptions
about the shape of probability distributions and
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without changing the sampled value (it just rear-
ranges their pairings in the sample matrix). It is
also mathematically simple and applying it do not
require complex tools, as would other approaches
involving, for example, copulas (Nelsen 2005).

2.2 Modeling uncertainty with sets of probabili-
ties

The second problem concerns situations where
available information is scarce, imprecise or not
fully reliable. Such information can come, for in-
stance, from experts, from few experimental data,
from sensors, etc. There are many arguments con-
verging to the fact that, in such situations, a single
probability distribution is unable to account for
the scarcity or imprecision present in the available
information, and that such information would be
better modeled by sets of probabilities (see (Wal-
ley 1991, Ch.1) for a summary and review of such
arguments).

Here, we consider two such models: p-boxes
and possibility distributions. They are both pop-
ular, simple and are instrumental to represent
or elicit information from experts (for more gen-
eral models and longer discussion, see (Destercke,
Dubois, and Chojnacki 2007)).
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Figure 1: Illustration of a p-box

P-boxes (short name for probability boxes)
are the imprecise counterparts of cumulative dis-
tributions. They are defined by an upper (F ) and a
lower (F ) cumulative distributions forming a pair
[F , F ] describing the uncertainty: the information
only allows us to state that the true cumulative
distribution is between F and F , and any cumu-
lative distribution F such that F ≤ F ≤ F is
coherent with the available information. A p-box
induces a set P[F ,F ] of probabilities, such that

P[F ,F ] = {P |∀x ∈ R, F (x) ≤ P ([−∞, x]) ≤ F}.

P-boxes are appropriate models when experts pro-
vide a set of (imprecise) percentiles, when consid-
ering the error associated to sensor data, when we
have only few experimental data or when we have
only information about some characteristics of a
distribution (Ferson, Ginzburg, Kreinovich, My-
ers, and Sentz 2003). Consider the following expert
opinion about the temperature of a fuel rode in a
nuclear reactor core during an accidental scenario:

• Temperature is between 500 and 1000 K

• The probability to be below 600 K is be-
tween 10 and 20%

• The probability to be below 800 K is be-
tween 40 and 60%

• The probability to be below 900 K is be-
tween 70 and 100%

Figure 1 illustrates the p-box resulting from this
expert opinion.

Possibility distributions correspond to in-
formation given in terms of confidence intervals,
and thus correspond to a very intuitive notion. A
possibility distribution is a mapping π : R→ [0, 1]
such that there is at least one value x for which
π(x) = 1. Given a possibility distribution π, pos-
sibility Π and necessity N measures of an event A
are respectively defined as:

Π(A) = max
x∈A

π(x) and N(A) = 1− π(Ac)

with Ac the complement of A. For any event A,
N(A) ≤ Π(A), and possibility and necessity mea-
sure are respectively interpreted as upper and
lower confidence levels given to an event, defin-
ing a set of probabilities Pπ (Dubois and Prade
1992) such that

Pπ = {P |∀A ⊆ RN(A) ≤ P (A) ≤ Π(A)}

with P a probability distribution. For a given
possibility distribution π and for a given value
α ∈ [0, 1], the (strict) α-cut of π is defined as the
set

πα = {x ∈ R|π(x) > α}.
Note that α-cuts are nested (i.e. for two values
α < β, we have πβ ⊂ πα). An α-cut can then be
interpreted as an interval to which we give confi-
dence 1 − α (The higher α, the lower the confi-
dence). α-cuts and the set of probabilities Pπ are
related in the following way

Pπ = {P |∀α ∈ [0, 1], P (πα) ≥ 1− α}.
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Possibility distributions are appropriate when ex-
perts express their opinion in term of nested con-
fidence intervals or more generally when infor-
mation is modeled by nested confidence inter-
vals (Baudrit, Guyonnet, and Dubois 2006). As
an example, consider an expert opinion, still about
the temperature of a fuel rode in a nuclear reactor
core, but this time expressed by nested confidence
intervals:

• Probability to be between 750 and 850 K is
at least 10%

• Probability to be between 650 and 900 K is
at least 50%

• Probability to be between 600 and 950 K is
at least 90%

• Temperature is between 500 and 1000 K
(100% confidence)

Figure 2 illustrates the possibility distribution re-
sulting from this opinion.
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Figure 2: Illustration of a possibility distribution

3 PROPAGATING WITH DEPENDENCIES
AND IMPRECISE MODELS

Methods presented in Section 2 constitute very
practical solutions to solve two different problems
often encountered in applications. As both prob-
lems can be encountered in a same application, it
would be interesting to blend these two tools. Such
a blending is proposed in this section.

3.1 Sampling with imprecise probabilistic models

When uncertainty on a (random) variable X is
modeled by a precise cumulative distribution FX ,
then simulating this variable X by sampling meth-
ods usually consists of drawing values α coming
from a uniform law on [0, 1], and then to asso-
ciate the (precise) value F−1(α) to each value α
(see Figure 3.A). In the case of a N -dimensional

problem simulated by M samples, the jth sample
consists of a vector (αj1, . . . , α

j
N), to which is asso-

ciated the realization (F−1(αj)1, . . . , F
−1(αj)N) =

(xj1, . . . , x
j
N). Let us now detail what would be the

result of such a sampling with imprecise models.

P-boxes: since a p-box is described by (lower
and upper ) bounds on cumulative distributions,
to each value α do not longer correspond a unique
inverse value, but a set of possible values. This
set of possible values correspond to the interval
bounded by the upper (F−1) and lower (F−1)
pseudo inverses, defined, for all α ∈ (0, 1] as fol-
lows:

F
−1

= sup{x ∈ R|F (x) < α}

F−1 = inf{x ∈ R|F (x) > α}
See Figure 3.B for an illustration. Thus, given a
p-box [F , F ], to a sampled value α ∈ [0, 1] we as-
sociate the interval Γα such that

Γα := [F
−1

(α), F−1(α)]

Possibility distributions: In the case of a
possibility distributions, it is natural to associate
to each value α the corresponding α-cut (see Fig-
ure 3.C for illustration). Anew, this α-cut πα is,
in general, not a single value but an interval.

We can see that, by admitting imprecision
in our uncertainty representation, usual sampling
methods do not longer provide precise values but
intervals (which are effectively the imprecise coun-
terpart of single values). With such models, el-
ements of matrix S can be intervals and propa-
gating them through a model T will require to
use interval analysis technics (Moore 1979). Al-
though achieving such a propagation is more diffi-
cult than single point propagation when the model
T is complex, it can still remain tractable, even
for high dimensional problems (see (Oberguggen-
berger, King, and Schmelzer 2007) for example).
Nevertheless, propagation is not our main concern
here, and sampling scheme can be considered in-
dependently of the subsequent problem of propa-
gation.

Also note that above sampling procedures have
been considered by Alvarez (Alvarez 2006) in the
more general framework of random sets, of which
p-boxes and possibility distributions constitute
two particular instances. Let us now see how Iman
and Conover method can be extended to such
models.
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Fig. 3.A: precise prob.
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Fig. 3.B: p-box
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Fig. 3.C: possibility dist.

Figure 3: Sampling from precise and imprecise probabilistic models: illustration

3.2 Extension of Iman and Conover method

We first recall some notions coming from order
theory. Let P be a set and ≤ a relation on the ele-
ments of this set. Then, ≤ is a complete partial
order if it is reflexive, antisymmetric and transi-
tive, that is if for all triplet a, b, c of elements in
P

a ≤ a (reflexivity) (1)

if a ≤ b and b ≤ a, then a = b (antisymmetry)
(2)

if a ≤ b and b ≤ c, then a ≤ c (transitivity)
(3)

and if for two elements a, b, neither a ≤ b nor
b ≤ a, then a and b are said to be incomparable.
A partial order ≤ is total, and is called an order
(or a linear order), if for every pair a, b in P , we
have either a ≤ b or b ≤ a.

When uncertainty is modeled by precise prob-
abilities, sampled values are precise, and the main
reason for being able to apply Iman and Conover
method in this case is that there is a natural com-
plete ordering between real numbers, and that
to any set of values corresponds a unique rank-
ing. This is no longer the case when realizations
are intervals, since in most cases only partial or-
derings can be defined on sets of intervals (due
to the fact that they can be overlapping, nested,
disjoint,. . . ). Given two intervals [a, b], [c, d], it is
common to consider the partial ordering such that
[a, b] < [c, d] if and only if b < c, and to con-
sider that two intervals are incomparable as soon
as they overlap. This partial order is commonly
called interval order. Adapting Iman and Conover
method when samples are general intervals thus
seems difficult and would result in a not very con-

venient tool, since one would have to consider ev-
ery possible extension of the partial ordering in-
duced by the interval ordering.

To circumvent this problem and to be able to
apply Iman and Conover method in an easy way
on p-boxes and possibility distributions, we have
to define a complete ordering on the elements sam-
pled from these two representation.

First, note that when uncertainty on a vari-
able X is modeled by a single (invertible) cumu-
lative distribution FX , there is a one-to-one corre-
spondence between the ranking of sampled values
αj ∈ [0, 1] and the ranking of corresponding values
of X, in the sense that, for two values αi, αj, we
have

αi < αj ⇐⇒ F−1(αi) < F−1(αj). (4)

We will use this property to extend Iman and
Conover technics when realizations are either in-
tervals Γα coming from a p-box or α-cuts πα of a
possibility distribution.

P-boxes: Consider first a p-box [F , F ]. For
such a p-box, the ordering similar to Equation
(4) means that for two values α, β in [0, 1], we
have α < β → Γα < Γβ, which is equivalent to
impose a complete ordering between "cuts" Γ of
the p-box. We note this ordering ≤[F ,F ]. Given
two intervals [a, b], [c, d], this definition is equiva-
lent to state that an interval [a, b] ≤[F ,F ] [c, d] if
and only if a ≤ c and b ≤ d. Roughly speaking,
taking such an ordering means that the rank of
an interval increases as it "shifts" towards higher
values. Note that the ordering ≤[F ,F ] is complete
only when intervals are sampled from a p-box, and
that incomparability can appear in more general
cases (e.g. when intervals are nested, or when they
come from general random sets).
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Possibility distributions: given a possibil-
ity distribution π, the ordering similar to Equation
(4) is equivalent to consider a complete ordering
on α-cuts induced by inclusion: for two values α, β
in [0, 1], we have α < β → πα ⊃ πβ. We note ≤π
the ordering such that

[a, b] ≤π [c, d] if and only if [a, b] ⊃ [c, d]

with [a, b], [c, d] two intervals. Here, the rank of
an interval increases as it gets more precise (nar-
rower). Again, the ordering ≤π is complete only
when intervals are sampled from a possibility dis-
tribution.

Now that we have defined complete orderings
on intervals sampled from p-boxes and possibil-
ity distributions, we can apply Iman and Conover
method without difficulty to these models. Never-
theless, one must pay attention that a same value
of rank correlation will have different meaning and
interpretation, depending on the chosen represen-
tation (and, consequently, on the chosen ordering).

In the case of p-boxes defined on multiple vari-
ables, a positive (negative) rank correlation al-
ways means that to higher values are associated
higher (lower) values. The main difference with
single cumulative distributions is that samples are
now intervals instead of single values. In the case
of p-boxes, the application of Iman and Conover
method can then be seen as a "simple" extension
of the usual method, with the benefits that im-
precision and scarceness of information is now ac-
knowledged in the uncertainty model. As a practi-
cal tool, it can also be seen as a means to achieve
a robustness study (concerning either distribution
shape or correlation coefficients). Since correlation
coefficients can seldom be exactly known and are
often provided by experts, such a robustness in-
terpretation appears appealing. Also note that the
ordering ≤[F ,F ] is a refinement of the classical or-
dering considered on intervals, and reduce to the
classical ordering between numbers when samples
are single values. All this indicates that using Iman
and Conover method on p-boxes is also equivalent
to induce monotonic dependencies between vari-
ables.

Contrary to p-boxes, rank correlations related
to possibility distributions and to the ordering ≤π
cannot be considered as an extension of the classi-
cal Spearman rank correlations. To see this, sim-
ply note that the ordering ≤π, based on inclusion
between sets, is not a refinement of the classical or-
dering considered on intervals, and do not reduce

to the classical ordering of numbers when samples
are single values. In the case of possibility distri-
butions, a positive (negative) rank correlation be-
tween two variables X, Y means that to more pre-
cise descriptions of the uncertainty on X will be
associated more (less) precise descriptions of the
uncertainty on Y , i.e. that to narrower intervals
will correspond narrower (broader) intervals. Such
dependencies can be used when sensors or experts
are likely to be correlated, or in physical models
where knowing a value with more precision means
knowing another one with less precision (of which
Heisenberg principle constitutes a famous exam-
ple). Such kind of dependencies has poor relation
with monotonic dependencies, meaning that using
the proposed extension to possibility distribution
is NOT equivalent to assume monotonic depen-
dencies between variables, but rather to assume a
dependency between the precision of the knowl-
edge we have on variables. Nevertheless, if mono-
tonic dependencies have to be integrated and if in-
formation is modeled by possibility distributions,
it is always possible to extract a corresponding p-
box from a possibility distribution, and then to
sample from this corresponding p-box (see (Bau-
drit and Dubois 2006)).

4 CONCLUSIONS

Integrating known correlation between vari-
ables and dealing with scarce or imprecise informa-
tion are two problems that coexist in many real ap-
plications. The use of rank correlation through the
means of Iman and Conover method and the use of
simple imprecise probabilistic models are practical
tools to solve these two problems. In this paper,
we have proposed an approach to blend these two
solutions, thus providing a practical tool to cope
(at the same time) with monotonic dependencies
between variables and with scarceness or impreci-
sion in the information.

Sampling methods and complete orderings re-
lated to possibility distributions and p-boxes have
been studied and discussed. They allow to apply
Iman and Conover method to these two models
without additional computational difficulties. We
have argued that, in the case of p-boxes, rank cor-
relations can still be interpreted in terms of mono-
tonic dependencies, thus providing a direct exten-
sion of Iman and Conover method, with the advan-
tage that it can be interpreted as an integrated
robustness study. The interpretation concerning
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possibility distributions is different, as it is based
on set inclusion, and describes some dependencies
between the precision of the knowledge we can ac-
quire on different variables. We suggest that such
correlation can be useful in some physical models,
or when sources of information (sensors, experts)
are likely to be correlated.

In our opinion, the prime interest of the sug-
gested extensions is practical, as they allow to
use very popular and efficient numerical technics
such as Latin Hyper Cube Sampling and Iman and
Conover method with imprecise probabilistic mod-
els. Moreover, the proposed extensions can bene-
fits from all the results concerning these numerical
technics (for instance, see (Sallaberry, Helton, and
Hora 2006)).
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