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Abstract—Many authors have studied fuzzy belief structures,
that is belief functions having fuzzy sets as focal elements.
One of the main reason for this is that this structure offers a
convenient way to mix probabilistic and fuzzy information. Still,
one point on which authors often disagree is how information
represented by fuzzy belief structures should be processed,
i.e., how should be defined fusion operations, decision rules,
uncertainty measures, uncertainty propagation, etc. for such
representations. In this paper, we consider that fuzzy belief
structures are mapped into classical belief structures encoding
the same information, and propose to manipulate these latter
structures. From a practical standpoint, it has the benefit that
processing tools proper to belief structures can be used together
with their interpretation, rather than having to consider a
mix of probabilistic and fuzzy calculi, which can be harder
to interpret.

I. INTRODUCTION

The uncertainty concerning the value of a variable can
come in different forms (vague assessments, set of measure-
ments, imprecise observations, unreliability, . . . ), requiring
different representations. Among existing models, probability
distributions and fuzzy sets are the simplest representations
to respectively model imprecision and randomness in the
observations. As both type of uncertainty often coexist in
practical applications, it is desirable to integrate fuzzy sets
and probability distributions in a single representation and to
treat both uncertainty types at once.

Fuzzy belief structures [1] present a natural answer to such
a requirement. Such structures are defined by probability
masses summing up to one and bearing no longer on single
points but on fuzzy sets. Formally, they are equivalent to
so-called fuzzy random variables or random fuzzy sets [2].
Fuzzy belief structures can be the result of different informa-
tion processing (information fusion [3], propagation [4], lin-
guistic probability assessments [5], . . . ), can address a variety
of problems (control [6], optimisation under uncertainty [7])
and be considered with different semantics (fuzzy sets can
either be considered as elements of a particular domain [8]
or as the imprecise description of our knowledge about a
variable [2]). Due to this variety of origins and purposes,
many different ways in which information represented by
a fuzzy belief structure should be processed have been
proposed, making the interpretation and practical handling
of fuzzy belief structures difficult for non-expert users.

Some results [9] show that a fuzzy belief structure can be
mapped into a classical belief structure capturing the same
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information as the original fuzzy belief structure. This view
allows to use processing tools proper to belief structures,
without having to mix them with fuzzy calculus. In this
paper, we investigate the practical handling of fuzzy belief
structures under such a view, and links it to propositions
separately handling fuzzy and probabilistic information when
possible.

After some preliminaries (Section II), we investigate
more specifically the following problems: information fusion
(Section III), focusing on the interpretation of Dempster’s
rule; information propagation (Section IV), in particular
the problems of independence modelling and of cascading
propagation; decision rules (Section V).

II. FUZZY BELIEF STRUCTURES AND RANDOM SETS

Note that, in this paper, fuzzy belief structures represent
our uncertainty about the true (crisp) value of a variable X
assuming its value on a domain X that either is finite or
is some (discretized) product space of the real line. Fuzzy
sets are thus here interpreted as possibility distributions, and
we do not consider other semantics [10]. Therefore, we
will indifferently refer to a fuzzy set or to the possibility
distribution equivalent to its membership function.

A. Possibility distributions

A possibility distribution π(x) is a mapping from a space
X to [0, 1] and is formally equivalent to a fuzzy membership
function µ s.t. µ(x) = π(x). One can interpret a possibility
distribution on the real line as a set of nested confidence
intervals [11]. From a possibility distribution, several set-
functions can be defined [12]: the possibility, necessity and
sufficiency measures, respectively defined as

Π(A) = sup
x∈A

π(x)

N(A) = 1−Π(Ac)

∆(A) = inf
x∈A

π(x)

Where Ac stands for the complement of A. A possibility
degree Π(A) quantifies to what extent the event A is plau-
sible, the necessity degree quantifies the certainty of A and
the sufficiency degree quantify the guaranteed possibility of
an event A. These measures can sometimes be interpreted as
probability bounds, in the sense that a distribution π induces
a probability set Pπ containing the probability measures
dominating the necessity measure, i.e.

Pπ = {p ∈ PX |∀A ⊆ X , P (A) ≥ N(A)},



with P the probability measure induced by the probability
mass function p, and PX the set of probability mass functions
over X

An α-cut Eα of the distribution π is defined as the set

Eα = {x|π(x) ≥ α}

The core c(π) and the support s(π) of π respectively
correspond to E1 and limε→0Eε

B. Belief structure (BF)

A belief structure consists of a mapping m from subsets
of a space X to [0, 1] s.t.

∑
E⊆X m(E) = 1,m(E) ≥ 0

and m(∅) = 0. Sets E that have positive mass are called
focal sets. From this mapping, we can again define three set-
functions, the plausibility, belief and commonality functions,
which read [13]:

Bel(A) =
∑

E,E⊆A

m(E)

Pl(A) =
∑

E,E∩A
m(E) = 1−Bel(Ac)

Q(A) =
∑

E,E⊇A

m(E)

where the belief function quantifies the amount of infor-
mation that surely supports A, the plausibility reflects the
amount of information that potentially supports A and the
commonality function the amount of information implied by
A. In this model the mass m(E) should be interpreted as
the probability of only knowing that the unknown quantity
lies in E. When focal sets are nested, a belief structure is
equivalent to a possibility distribution, and the belief (resp.
plausibility and commonality) function is also a necessity
(resp. possibility and sufficiency) measure. Such belief struc-
tures are usually called consonant. Let F be a fuzzy set and
α0 = 0 < α1 < . . . < αN = 1 the set of its distinct
membership function values. Then F induce (and is induced)
by the belief structure having, for j = 1, . . . , N , the focal
elements Fj such that

m(Fj) = αj − αj−1,

with Fj the αj-cut of F .
Note that a belief structure m also induces a particular

probability set Pm such that

Pm = {p ∈ PX |∀A ⊆ X , P (A) ≥ Bel(A)}.

This interpretation of belief structures inherits from Demp-
ster’s [14] work.

C. Fuzzy belief structure (FBS)

Zadeh [15] was the first to propose an extension of belief
structures when focal sets are fuzzy sets. Here, we will note
these fuzzy sets Fi, with α0 = 0 < α1 < . . . < αN = 1 the
distinct values of the membership function of every Fi. Since
then, many proposals have appeared that extend plausibility
and belief functions when focal elements also are fuzzy (see,

for example [16], [1]). In this paper, we retain Yen’s [17]
definition, which, in the discrete case, reads:

Plm(A) =

n∑
i=1

m(Fi)

N∑
j=1

(αj − αj−1) max
w∈Fi,j

µA(w) (1)

Belm(A) =

n∑
i=1

m(Fi)

N∑
j=1

(αj − αj−1) min
w∈Fi,j

µA(w) (2)

where Fi,j is the αj-cut of the fuzzy focal element Fi. The
reason of choosing this generalization rather than another one
is that the part involving fuzzy sets Fi in equations (1) and
(2) is equivalent to computing the Choquet integral [18] of
the (possibly fuzzy) event A over the possibility distribution
πi = µFi

. We thus use linear operators in every part
of the equation, which seems to us more coherent than
using a mixing of linear operators and maximum/minimum
based operators. Let us also notice that Yen’s approach is
a generalization of Smet’s definition [19]. Although Yen’s
work is not based on these two considerations, but rather
on optimization criteria, it is interesting to underly the fact
that this generalization of belief structures to fuzzy focal sets
has strong theoretical justifications and interconnections with
other theories. The commonality measure can be extended
likewise and be defined for fuzzy belief structures and fuzzy
events. If A is such a fuzzy event, then the commonality
measure Qm(A) induced by a fuzzy belief structure can be
defined as

Qm(A) =

n∑
i=1

m(Fi)

N∑
j=1

(αj − αj−1) inf
w∈(Fi,j)

c
(1− µA(w)),

(3)
with Ec the complement of E and the convention that
infw∈Ec(1 − µA(w)) = 1 if E = X . It can easily be
checked that if A is a crisp event and if m is reduced
to a classical belief structure or to a single fuzzy set,
we respectively retrieve the commonality measure and the
sufficiency measure.

In fact, viewing the fuzzy belief structure as presented here
comes down to reducing a random fuzzy set to a random set
where each cut Fαj

i has mass m(Fi)(αj −αj−1) [4]. In the
continuous case [20], it is equivalent to consider the convex
combination of possibility and necessity measures (viewed
as continuous consonant plausibility and belief functions)
induced by πi.

In order to differentiate between a fuzzy belief structure
(i.e. focal weights affected to fuzzy sets) and its mapping into
a classical belief structure (i.e. weights given to sets that are
α-cuts of fuzzy focal elements) when needed, we will use the
notation m̃ for the former and m for the latter. We will also
speak of belief structures when referring to classical belief
structures. Also, when a clear separation between processing
operations will be needed, we will refer to the probabilistic
information of the fuzzy belief structure when processing
operations concern the mass assignments of the fuzzy focal
elements, and to the fuzzy information of the fuzzy belief



structure when processing operations concern the fuzzy focal
sets.

Also note that for any event A ⊆ X , we have Plm(A) =∑n
i=1m(Fi)Πi(A), with Πi(A) the possibility measure in-

duced by Fi. This means that we can also interpret this
mapping of a fuzzy belief structure into a classical belief
structure in terms of induced probability sets, since we have
that Pm, the probability set induced by Plm, is the convex
combination of each PFi , i.e.

Pm =

{
n∑
i=1

m(Fi)pi ∈ PX |pi ∈ PFi

}
, (4)

with PFi
the probability set induced by Fi. Finally, it is

useful to note that if any fuzzy belief structure can be mapped
into a belief structure, the reverse is also true, that is any
belief structure can be mapped into a (non-unique) fuzzy
belief structure by rearranging focal elements into nested
subgroups, and affecting the sum of these focal elements
weight as the weight of the resulting fuzzy focal element.
The mapped fuzzy focal elements may be restricted to fuzzy
subsets taking their membership values in {0, 1}, retrieving
crisp focal sets in this case. We can now study the handling
of fuzzy belief structures under this particular assumption,
seeing them as belief structures. We first introduce an exam-
ple that we will use in the sequel to illustrate our purpose.

Example 1. We consider as domain X the interval [1, 9]
discretized into three elements x1 = [1, 3];x2 =]3, 6];x3 =
]3, 9].

A first fuzzy belief structure m̃1 is defined on two fuzzy
focal elements F1 and F2, with m̃1(F1) = 0.8, m̃1(F2) =
0.2 and F1, F2 summarized in the following table

x1 x2 x3
F1 1 1 0.5
F2 0 1 1

This fuzzy belief structure can be mapped into the belief
structure m1 such that

m1({x1, x2}) = 0.4 m1(X ) = 0.4

m1({x2, x3}) = 0.2

A second fuzzy belief structure m̃2, reduced to the single
fuzzy set G1, is summarized in the following table

x1 x2 x3
G1 0.2 1 1

and is equivalent to the belief structure m2 such that

m2({x2, x3}) = 0.8 m2(X ) = 0.2

III. FUSION

Let us first consider the problem of combining a set of
fuzzy belief structures provided by different sources. Several
authors have proposed fusion rules to merge a set of fuzzy
belief structures, all of them combining Dempster’s rule of
combination with fuzzy combination rules (i.e., t-norms [21]
and t-conorms), respectively to combine probabilistic and

fuzzy information of the fuzzy belief structures. One of the
reason for this is that they interpret fuzzy focal elements as
fuzzy propositions (which is not the case here).

However, there are situations where such combinations
could be questioned, for instance when the fuzzy sets de-
scribe the vague knowledge one has about a precise value,
that is when they describe our uncertainty about the value of a
variable (e.g., fuzzy sets describing the age of an individual).
Also, it can be difficult to give some interpretation in term of
source or evidence dependencies when different combination
operators are used within the same representation.

Let m̃1 and m̃2 be two fuzzy belief structures, with re-
spectively F1, . . . , FL and G1, . . . , GK their focal elements.
When one considers their mappings into belief structures
m1,m2, fusion rules coming from evidence theory [22] and
the like can be applied straightforwardly. In particular, if
information sources are assumed to be independent, we can
simply apply Dempster’s rule, giving to every subset A ⊆ X
the mass m1⊗2 such that

m1⊗2(A) =
∑

Fi,j∩Gk,l=A
i∈[1,L],j∈[1,N1]
k∈[1,K],l∈[1,N2]

m(Fi)m(Gk)(αj − αj−1)(βl − βl−1),

with α0 = 0 < α1 < . . . < αN1
= 1 (resp. β0 = 0 < β1 <

. . . < βN2
= 1) the set of distinct membership function

values of fuzzy focal elements Fi (resp. Gk), and Fi,j (resp.
Gk,l) is the αj-cut of the fuzzy set Fi (resp. the βl-cut of
Gk).

In the case of consonant belief structures (i.e., single
fuzzy sets), Dubois and Prade [23] have shown that the
upper measures obtained by taking the product combination
of the fuzzy sets and by using Dempster’s rule (without
normalisation) coincide on singletons. This shows that the
result obtained with the product t-norm can be seen as
a partial information of the result obtained by Dempster’s
rule, and can therefore be assimilated to an assumption of
independence. The next proposition shows that we have a
similar property here.

Proposition 1. Let m̃1, m̃2 be two fuzzy belief structures,
then the following equality holds for any x ∈ X

Pl1⊗2({x}) =
∑
Fi,Gk

i∈[1,L],k∈[1,K]

m(Fi)m(Gk)µFi
(x)µGk

(x), (5)

with Pl1⊗2 the plausibility measure induced by m1⊗2 and
µF the membership function value of F .

Proof: First, consider the equation of Pl1⊗2({x}), i.e.,

Pl1⊗2({x})=
∑

x∈Fi,j∩Gk,l

i∈[1,L],j∈[1,N1]
k∈[1,K],l∈[1,N2]

m(Fi)m(Gk)(αj−αj−1)(βl−βl−1) (6)

Now, consider the product µFi(x)µGk
(x) of the two mem-

bership functions. Considering the equivalent consonant be-
lief structures and using Dubois and Prade result [23], we



have

µFi
(x)µGk

(x) =
∑

x∈Fi,j∩Gk,l

j∈[1,N1],l∈[1,N2]

(αj − αj−1)(βl − βl−1)

Let us replace this equality in Eq. (5). It gives

Pl1⊗2({x}) =
∑
Fi,Gk

i∈[1,L],k∈[1,K]

m(Fi)m(Gk)
∑

x∈Fi,j∩Gk,l

j∈[1,N1],l∈[1,N2]

(αij−αij−1)(βkl −βkl−1),

which is indeed equivalent to equation (6). This finishes the
proof.

This proposition tells us that, in the case of fuzzy belief
structures, combining separately probabilistic information
and fuzzy information with fusion rules corresponding to
an assumption of independence can also be interpreted as
a trace of the information resulting from the application
of Dempster’s rule to the mapped belief structure. Note
also that, by using Dempster’s rule, we keep all of its
properties, such as associativity or commutativity, with or
without normalisation. This is not necessarily the case when
mixing Dempster’s rule with fuzzy t-norms [17], even if
both fusion rules considered separately are associative and
commutative.

Note that, as in the case of single fuzzy sets, the equality
only holds for singletons, since Demspter’s rule applies to
elements of the power set 2|X | of X , while fuzzy combination
rules apply to elements of X . This is illustrated in the
following example.

Example 2. Consider the two fuzzy belief structures m̃1, m̃2

of Example 1 and their mappings into belief structures m1

and m2. The result m1⊗2 of applying Dempster’s rule to
m1,m2 is such that

m1⊗2({x2}) = 0.32, m1⊗2({x2, x3}) = 0.52,

m1⊗2({x1, x2}) = 0.08, m1⊗2(X ) = 0.08.

While considering the product of m̃1, m̃2 and the combina-
tion of the fuzzy focal elements by the product t-norm gives
the fuzzy belief structure m̃1�2 with fuzzy focal elements
F11 and F21 such that

x1 x2 x3
F11 = µF1

µG1
0.2 1 0.5

F21 = µF2µG1 0 1 1

The mapping of m̃1�2 into a classical belief structure m1�2
gives

m1�2({x2}) = 0.4, m1�2({x2, x3}) = 0.44,

m1�2(X ) = 0.16,

and we do have

Pl1�2({x1}) = Pl1⊗2({x1}) = 0.16,

P l1�2({x2}) = Pl1⊗2({x2}) = 1,

P l1�2({x3}) = Pl1⊗2({x3}) = 0.6,

but we have, for the event {x1, x3},

Pl1�2({x1, x3}) = 0.6 6= Pl1⊗2({x1, x3}) = 0.68.

Note that as in the case of single fuzzy sets [23], the com-
bination m1�2, which is computationally easier to achieve,
is an inner approximation of m1⊗2, in the sense that for any
event A ⊆ X , we have Pl1�2(A) ≤ Pl1⊗2(A).

It is more difficult to interpret other rules that consider
the product of probabilistic information and the combination
of fuzzy information with other t-norms, for the reason that
such combinations mix different independence assumptions
(see, for instance [24]). Similarly, it may be difficult to
interpret other fusion rules proper to belief structures (see,
for example, recent propositions of Denoeux [22]) in terms
of separate merging of fuzzy and probabilistic information.
On the other hand, there may be situations where other rules
than Dempster’s rule could be preferred and justified, in order
preserve a particular arrangement of the focal elements. For
example, in order to extend bayesian inference, Walley [25]
considers partially consonant belief functions (i.e., belief
functions for which focal elements form non-overlapping
groups of nested foci) and proposes a fusion rule, based on
commonality measures, that merge two partially consonant
belief functions into a belief function that is again partially
consonant.

IV. PROPAGATION

Let us now investigate the problem of propagating in-
formation through a function f whose variable uncertainty
is described by fuzzy belief structures. As recalled in the
introduction, these fuzzy belief structures could be the result
of a fusion process, a statistical counting of imprecise obser-
vation, or a previous propagation (in the case of cascading
propagation through multiple functions). Let X1, . . . , XM be
M variables assuming their values on spaces X 1, . . . ,XM
and f : ×Mi=1X i → Y a function from the Cartesian product
of X 1, . . . ,XM to Y . Propagation consists in evaluating the
uncertainty on variable Y by propagating the uncertainty of
X1, . . . , XM through f .

If uncertainty is directly given as a joint fuzzy belief
structure m̃ over ×Mi=1Xi, with m its mapping in a belief
structure, then if E1, . . . , EL are the focal elements of m,
the propagated belief structure is such that, for i = 1, . . . , L

EYi = f(Ei) = {f(x) ∈ Y|x ∈ Ei},

m(EYi ) = m(Ei),

where x denotes a vector of ×Mi=1X i. However, such an
ideal situation is unlikely to happen in practice, simply
because giving directly a joint uncertainty representation
is too difficult. The most common situation consists in
combining individual uncertainty representations (here, fuzzy
belief structures) given for each variable X 1, . . . ,XM into a
joint model over ×Mi=1X i by using specific (in)dependence
assumptions.

Before going into further details about how to combine
and propagate fuzzy belief structures, let us first recall



the classical independence assumptions used to respectively
combine and propagate fuzzy sets and belief structures.

A. classical independence assumptions for fuzzy sets and
belief structures

Zadeh’s extension principle [26] is usually considered
to propagate fuzzy sets. Given M fuzzy sets F 1, . . . , FM

respectively defined over X 1, . . . ,XM , the fuzzy set Ff
obtained by propagating them through f by the extension
principle is such that, for any y ∈ Y ,

µFf
(y) = sup

x1,...,xN∈×M
i=1X

i

f(x1,...,xN )=y

min
i=1,...,M

(µF i(xi)).

This extension principle is equivalent to consider the joint
fuzzy set F 1,M over ×Mi=1Xi such that µF 1,M (x1, . . . , xN ) =
mini=1,...,M (µF i(xi)) and then to propagate the classical
consonant belief structure induced by F 1,M . In the sequel,
we will call such a joint fuzzy set non-interactive, and
will talk of non-interactivity for the associated independence
notion. Note that an important advantage of the extension
principle, from a practical standpoint, is that it is compu-
tationally attractive, since it comes down to apply interval
analysis at each α-cut level.

Now, when uncertainty is described by M belief struc-
tures m1, . . . ,mM having respectively L1, . . . , LM focal el-
ements, the classical independence notion used to propagate
them is the random set independence notion [27]. That is,
for any set E ⊆ ×Mi=1Xi,

mRI(E) =
∑

×M
i=1E

i
l=E

l∈{1,...,Li}

m(Eil ),

with Eil the lth focal element of mi.
The assumption of random set independence can be in-

terpreted as the assumption that the sources of information
of each variable xi are independent (e.g. different sensors
measure each variable xi). Also, an assumption of random
set independence is conservative when compared to other
notions of independence [28], and can thus be used as a
conservative tool to approximate such assumptions (which
are often difficult to handle in practice).

B. independence assumptions for fuzzy belief structures
Let us now consider that uncertainty over variables

X1, . . . , XM is described by fuzzy belief structures
m̃1, . . . , m̃M having respectively L1, . . . , LM fuzzy focal
elements. A classical assumption of independence [27] when
dealing with this type of mixed probabilistic and fuzzy
information is to assume stochastic independence for the
probabilistic information and non-interaction for the fuzzy
information. Under this assumption, if we consider the set
F 1
i1
, . . . , FMiM of fuzzy focal elements and that α1 < . . . <

αN are the distinct values that can take every fuzzy focal ele-
ment of m̃1, . . . , m̃M , then for a given αj the set ×Mk=1F

k
ik,αj

receive the mass

mSINI(×Mk=1F
k
ik,j

) = (αj − αj−1)

M∏
k=1

m(F kik),

with F kik,j the αj-cut of F kik . The belief structure mSINI

(for Stochastic Independence and Non Interaction) can then
be propagated through the function f . This particular inde-
pendence assumption reduces to the extension principle when
structures are reduced to single fuzzy sets, and to the random
set independence assumption when all focal elements are
classical sets. However, this independence assumption clearly
requires that the fuzzy and probabilistic information can be
considered and treated separately. That such an assumption
holds when fuzzy belief structures describe the global uncer-
tainty about variables is questionable. For example, consider
the case where the initial uncertainty is propagated through a
function f1, and that the fuzzy belief structure resulting from
the propagation must again be combined with other ones and
be propagated through a second function f2. That a SINI
assumption holds for this second propagation is doubtful,
even if it held for the first one.

Instead of considering such a mixed independence as-
sumption, one can consider the random set independence as-
sumption between the belief structures m1, . . . ,mM mapped
from m̃1, . . . , m̃M , with all advantages associated to such an
assumption (approximation of other independence notions,
clear generalisation of stochastic independence between vari-
ables).

In such a case, there is no correlation between α-cuts of
different fuzzy focal elements, and for a set F 1

i1
, . . . , FMiM of

fuzzy focal elements and given αjk levels for each of them,
the set ×Mk=1F

k
ik,jk

receive the mass

mRI(×Mk=1F
k
ik,jk

) =

M∏
k=1

m(F kik)(αjk − αjk−1).

This mass can then be propagated through function f .
Note that in general none of the joint uncertainty models
described by this two independence assumptions (SINI and
RI) is included in the other [29], as we may have two
events A,B ⊆ ×Mi=1Xi for which PlRI(A) ≤ PlRINI(A)
and PlRI(B) ≥ PlRINI(B), with PlRINI and PlRI the
plausibility measures induced by the two independence as-
sumptions.

Example 3. Consider two variables X1, X2 whose uncer-
tainty is respectively described by fuzzy belief structures
m̃1, m̃2 of Example 1. We consider the simple function
f(Y ) = X1−X2. The joint belief structure mRINI obtained
by a combination of fuzzy non-interaction and random set
independence is such that

mSINI([1, 9]×[1, 9]) = 0.16, mSINI([1, 9]×[3, 9]) = 0.24,

mSINI([1, 6]×[3, 9]) = 0.4, mSINI([3, 9]×[1, 9]) = 0.04,

mSINI([3, 9]× [3, 9]) = 0.16,

and the belief structure mRI obtained by an assumption of
random set independence between m1,m2 is such that

mSINI([1, 9]×[1, 9]) = 0.08, mSINI([1, 9]×[3, 9]) = 0.32,

mSINI([1, 6]×[1, 9]) = 0.08, mSINI([1, 6]×[3, 9]) = 0.32,



mSINI([3, 9]×[1, 9]) = 0.04, mSINI([3, 9]×[3, 9]) = 0.16.

The results of the propagation of both belief structures
through f is summarized in the following table

Set on Y mSINI mRI

[−8, 8] 0.08 0.16
[−8, 6] 0.32 0.24
[−8, 5] 0.08 0
[−8, 3] 0.32 0.4
[−6, 8] 0.04 0.04
[−6, 6] 0.16 0.16

And we have BelRI([−8, 3]) = 0.32 < BelSINI([−8, 3]) =
0.4, while BelRI([−8, 6]) = 0.88 > BelSINI([−8, 6]) =
0.8.

Note that, if one wants to keep the computational advan-
tages associated to the use of the fuzzy extension principle
while outer approximating the result that would give an
assumption of random set independence, it is possible to
apply a simple transformation to fuzzy focal elements in
order to obtain such an outer approximation [30]. Namely,
given the number M of dimensions, it comes down to
transform any fuzzy focal set Fi into F ′i such that for any
x ∈ X

F ′i (x) = (−1)M+1(Fi(x)− 1)M + 1.

Should such a transformation be applied to alleviate the
computational burden, it must be kept in mind that the related
information loss can be important.

V. DECISION

The problem of decision making with belief structures is
still an active research topic [31]. Here, we consider that
the decision problem consists in choosing among a set of
acts f1, . . . , fD given some uncertainty over a variable X
represented by a fuzzy belief structure m̃. To each of these
acts corresponds a (bounded) real-valued utility function
fi : X → R, with fi(x) representing the benefit (or loss)
of choosing fi when x is the true value of X . When manip-
ulating imprecise uncertainty representations such as belief
structures, there are two main strategies to extend classical
decision rules (here, expected utility): use the imprecise
information to select a single optimal act, or consider that the
presence of imprecision only allows us to select a subgroup
of possibly optimal acts. For each strategies, we will explore
one of the main proposition proposed in the literature that
can be applied to belief structure.

We will first interest ourselves to Smet’s pignistic proba-
bility [32], which consists in transforming a belief structure
into a single probability (i.e. the gravity center of the
probability set it represents). We will then interest ourselves
to Walley’s maximality criterion, proposed in the framework
of imprecise probability theory. This criterion consists in
searching optimal (i.e., non-dominated) acts, possibly ending
with a set of possible choices. For each decision rule, we will
consider its formula for belief structures issued from fuzzy
belief structures, and relate it to the original fuzzy belief
structure.

A. Pignistic probability
Given a belief structure m defined on X and with focal sets

E1, . . . , EL, the pignistic transformation consists in mapping
m to a probability distribution BetPm : X → [0, 1] such
that, for any x ∈ X , BetPm(x) =

∑
{Ei|x∈Ei}

m(Ei)/|Ei|,
with |Ei| the cardinality of Ei. The optimal act f can then be
chosen as the one maximising expected utility under BetPm,
i.e.

f = arg max
f1,...,fD

∑
x∈X

fi(x)BetPm(x).

Using the pignistic probability has been justified by Smets in
the framework of the TBM [32]. It is also equivalent to the
Shapley value in game theory, and corresponds to the gravity
center of Pm, the probability set induced by m (a parallel
can then be done with mechanic, where representing a set
by its gravity centre is usual).

When we map a fuzzy belief structure m̃ with focal
elements F1, . . . , FL into the belief structure m, the pignistic
probability BetPm of an element x ∈ X is given by the
formula

BetPm(x) =
∑
x∈Fi,j

m(Fi)(αj − αj−1)

|Fi,j |
. (7)

With |Fi,j | the cardinality of the αj-cut of Fi. Note that this
generalisation of the pignistic probability is different from
other propositions [1], where

BetP ′m(x) =

L∑
i=1

m(Fi)

(
µFi(x)∑
x∈XµFi

(x)

)
. (8)

The next proposition shows that Equation (7) is a meaningful
extension of the pignistic transform to fuzzy belief structure,
in the sense that it can be interpreted as a weighted mean of
pignistic transforms done on each fuzzy focal element.

Proposition 2. Let m̃ be a fuzzy belief structure with
F1, . . . , FL its focal elements and m its mapping into a
belief structure. Let BetPm̃,i denote the pignistic probability
induced by Fi, and BetPm the pignistic transform of m.
Then, the following equality holds for any x ∈ X

BetPm(x) =

L∑
i=1

m(Fi)BetPm̃,i(x)

Proof: Let α0 = 0 < α1 < . . . < αN be the distinct
function membership values of fuzzy focal elements FI . For
a given fuzzy focal element Fi, BetPm̃,i(x) reads

BetPm̃,i(x) =

N∑
j=1

(αj − αj−1)

|Fi,j |
.

If we denote by BetPm̃ as the mean of these probabilities
weighted by focal elements masses, we have

BetPm̃(x) =

L∑
i=1

m(Fi)BetPm̃,i(x)

=

L∑
i=1

m(Fi)

N∑
j=1

(αj − αj−1)

|Fi,j |
,



which is equal to Eq (7).
Eq (7) then simply comes down to take the mean of

the gravity centres of each PFi
, and is well in accordance

with the pignistic approach recommended by Smets. The
extension given by Eq. (8) is less coherent with a pignistic
approach, since it considers the mean of probabilities ob-
tained by applying the plausibility transform [33] to each
fuzzy focal element Fi (note that, in this case, the resulting
probability may not even be in Pm).

B. Maximality criterion

Pignistic transform maps an imprecise uncertainty repre-
sentation to a probability (hence precise) uncertainty repre-
sentation, allowing to use the classical expected utility crite-
rion to choose among acts. Another argument, whose main
proponents work in the framework of imprecise probability
theory [34], is that imprecise uncertainty representations
could generate imprecise decisions, our limited information
only allowing us, in some situations, to pinpoint a set of
optimal acts rather than a single one.

First, let us recall the notion of lower and upper expected
values of a function f over a probability set P: given a
(utility) function f : X → R, its lower and upper expected
vaues over P , respectively denoted by EP(f) and EP(f),
are such that

EP(f) = inf
p∈P

Ep(f) EP(f) = sup
p∈P

Ep(f),

where Ep is the classical expectation of f given p. Note that
both upper and lower expectations coincide and reduce to
classical expectation when P = {p} is reduced to a singleton.

Given acts f1, . . . , fD and a probability set P , the max-
imality criterion consists in inducing a partial order �M
among acts such that fi �M fj if and only if EP(fi−fj) ≥
0, meaning that given our knowledge about X , there is some
benefit in exchanging fj for fi. The setMP of optimal acts
under maximality criterion is then

MP = {fi| 6 ∃fj s.t. fj �M fi}

Let Pm be the probability set induced by the belief
structure m, itself mapped from the fuzzy belief structure
m̃. The following proposition shows that mapping m̃ into a
belief structure m is also coherent with maximality.

Proposition 3. Let PFi
be the probability set induced by the

fuzzy focal element Fi, then, for two acts fi, fj

EPm
(fi − fj) =

N∑
i=1

m(Fi)EPFi
(fi − fj)

Proof: Immediate, given relation (4) of Section II and
the fact that the lower expectation of a convex sum of
probability sets is equal to the convex sum of the lower
expectation of each of these probability set.

This proposition indicates that fi �M fj under uncertainty
m if and only there is a positive average benefit to exchange
fi for fj on each of the fuzzy focal element. Therefore,

usual decision rules used with imprecise uncertainty repre-
sentations are coherent with the mapping of a fuzzy belief
structure m̃ into a belief structure m, be it in the setting of
the TBM or of imprecise probability theory.

VI. CONCLUSION

In this paper, we have studied different operations on
fuzzy belief structures when they are mapped into belief
structures containing the same information. Such a mapping
allows to use tools proper to belief structures rather than
considering mixing of fuzzy and probabilistic calculi. Such
operations have the advantage that they often have a clearer
interpretation then mixed operations, making it more easy to
identify whether they apply to a given problem.

For instance, when merging multiple fuzzy belief struc-
tures, one can safely come back to the classical Dempser’s
rule, as Proposition 1 indicates that this rule captures the
information resulting from independence assumptions made
separately on the fuzzy focal elements and on their weights.
Establishing similar links with other rules appears more
difficult, as interpreting such rules is already a bit tricky
when they are applied to belief structures. The same con-
clusions apply to uncertainty propagation, as checking or
assuming random set independence between some variables
appear more feasible than mixing fuzzy non-interactivity and
random set independence notions.

We have also checked that decision rules remain coherent
when considering the mapping of a fuzzy belief structure
into a belief structure.

Note that this mapping essentially makes sense when the
fuzzy belief structure represent our uncertainty about the true
value of a variable X . There are other situations, for example
in those cases where the domain elements are themseles
fuzzy, or when the fuzzy sets describe gradual notions, where
transforming a fuzzy belief structure into a belief structure
makes less sense.
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