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Possibilistic information fusion using maximal coherent subsets
Sebastien Destercke and Didier Dubois and Eric Chojnacki

Abstract—When multiple sources provide information about
the same unknown quantity, their fusion into a synthetic
interpretable message is often a tricky problem, especially
when sources are conflicting. In this paper, we propose to
use possibility theory and the notion of maximal coherent
subsets (MCS), often used in logic-based representations, to
build a fuzzy belief structure that will be instrumental both
for extracting useful insight about various features of the
information conveyed by the sources and for compressing this
information into a unique possibility distribution. Extensions
and properties of the basic fusion rule are also studied.

Index Terms—Information fusion, maximal coherent subsets,
possibility theory, fuzzy sets, fuzzy belief functions

I. INTRODUCTION

When multiple sources deliver information tainted with
uncertainty about some unknown quantity, aggregating this
information can be a tedious task, especially when infor-
mation is conflicting. This problem was first addressed in
the framework of probability theory, and still constitutes an
active area of research (see [1] for a review).

Some shortcomings of probabilistic methods are empha-
sized in [2], where it is shown that probabilistic methods tend
to confuse randomness with imprecision. The shortcomings
of the arithmetic mean (the most used and founded fusion
operator for probabilities) are also discussed. Namely it tends
to suggest, as being plausible, values none of the sources
considered possible.

An alternative approach is to consider other theories of
uncertainty, such as imprecise probabilities [3], evidence
theory [4] or possibility theory [5]. These theories allow
to faithfully model incomplete or imprecise data, a feature
that probability theory arguably cannot account for. When
it comes to aggregating data from multiple sources, these
theories possess far more flexibility in the treatment of
conflicting information, mainly due to the flexible use of
set-operations (conjunction and disjunction ).

In this paper, we focus on uncertainty modeled by pos-
sibility distributions, for they can be easily elicited and
interpreted as collection of confidence intervals, and are
attractive from a computational viewpoint. On the other hand,
possibility distributions can sometimes be judged insuffi-
ciently expressive in regard with available information (other
theories should then be used).
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Many fusion rules have been proposed to aggregate
conflicting possibility distributions, using combinations of
conjunction and disjunction operations, possibly exploiting
additional data (e.g. reliability of sources); see [6] for review.
Most of these proposals result in a single final possibility
distribution built from the original distributions provided by
the sources, thus eliminating inconsistency between them
during the fusion process. In this paper, we explore a fusion
method based on maximal coherent subsets (a natural way
of coping with inconsistent knowledge basis in logic [7]).
The proposed fuzzy information fusion method does not
preserve the consonance property of possibility distribution
and produces a fuzzy belief structure.

The use of the notion of maximal coherent subsets in
uncertainty theories is not new: in the theory of imprecise
probabilities, the notion is thoroughly studied by Walley
in [8]. It is also used in [9] as a step in a fusion process,
and the result of the rule proposed in [10] can be seen as
a weighted average of maximal coherent subsets of sources.
In the context of evidence theory, the notion of maximal
coherent subsets is used in [11] to detect subgroups of
coherent sensors.

The paper is divided as follows: theoretical preliminaries
are introduced in Section II and Section III provides a quick
review of existing possibilistic fusion rules. Section IV then
explains how maximal coherent subsets are applied to obtain
the fuzzy belief structure. Some properties of the proposed
method are laid bare in comparison with other fusion rules in
Section V. Section VI presents and discusses some means of
extracting useful information from this structure, especially
a possibility distribution. Finally, Section VII proposes some
possible ways of taking into account additional information
concerning the sources.

II. PRELIMINARIES

Zadeh introduced the link between fuzzy sets and possi-
bility theory, and he was the first to propose an extension
of Shafer belief structures [4] when focal sets are fuzzy
sets [12]. Since then, many proposals appeared, for exam-
ple by Yager [13], Dubois and Prade [14], Yen [15] and
Denoeux [16]). This section presents the framework adopted
in the paper to handle fuzzy belief functions.

A. Possibility theory
A possibility distribution π is a mapping from a space

X to [0, 1] such that π(x) = 1 for some element x of
X , and is formally equivalent to the definition of a normal-
ized fuzzy membership function. One can interpret a quasi-
concave possibility distribution on the real line, that is a
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distribution equivalent to a fuzzy interval, as a set of nested
closed intervals, with various confidence levels [17]. From
a possibility distribution, possibility and necessity measures
are respectively defined as:

Π(A) = sup
x∈A

π(x)

N(A) = 1−Π(Ac)

where Ac stands for the complement of A. A possibility de-
gree Π(A) quantifies to what extent the event A is plausible,
while the necessity degree quantifies the certainty of A, in
the face of incomplete information modelled by π. These
measures can also be interpreted as probability bounds [18].

An α-cut Eα of the distribution π is defined as the set

Eα = {x|π(x) ≥ α}

The core c(π) and the support s(π) of π respectively
correspond to E1 and limε→0 E

ε

B. Fuzzy belief structure

A belief structure consists of a mapping m from the power
set ℘(X) of a space X to [0, 1] such that

∑
E⊆X m(E) = 1,

m(E) ≥ 0 and m(∅) = 0. Sets E that have positive mass
are called focal sets. From this mapping, we can again define
two set-functions, the plausibility and belief functions, which
read [4]:

Bel(A) =
∑

E∈℘(X)
E⊆A

m(E)

Pl(A) =
∑
E℘(X)
E∩A6=∅

m(E) = 1−Bel(Ac)

where the belief function quantifies the amount of informa-
tion that surely supports A, and the plausibility function re-
flects the amount of information that potentially supports A.
When focal sets are nested, a belief structure is equivalent to
a possibility distribution, and the belief (plausibility) function
is also a necessity (possibility) measure. In this model the
mass m(E) should be interpreted as the probability of only
knowing that the unknown quantity lies in E.

A natural way of putting fuzzy sets and belief functions
together is to assume that focal sets are fuzzy. Suppose there
are p fuzzy focal sets denoted Fi. The set of fuzzy focal sets
along with masses m(Fi) can be viewed as a fuzzy random
variable. The degrees of belief and plausibility of a fuzzy
event A are defined as follows:

Plm(A) =
p∑
i=1

m(Fi)

1∫
0

sup
w∈Fαi

µA(w) dα (1)

Belm(A) =
p∑
i=1

m(Fi)

1∫
0

inf
w∈Fαi

µA(w) dα (2)

where Fαi is the α-cut of the fuzzy focal element Fi. This is
Yen’s [15] definition. The reason for choosing this general-
ization rather than another one is that the part involving fuzzy

sets Fi in Equations (1) and (2) comes down to compute the
Choquet integral [19] of the (possibly fuzzy) event A with
respect to the possibility and necessity measures induced by
the distribution πi = µFi , with µFi the membership function
of Fi. This means that linear operators are used in every part
of the equation, which sounds more coherent than using a
mix of linear operators and of maximum/minimum definition
of possibility and necessity measures of fuzzy events. Note
that Yen’s work is not based on these two considerations, but
rather on optimization criteria. Also note that Yen’s approach
is in concordance with Smets definition of a fuzzy event [20]
(Equations (1) and (2) reduce to Smets definitions when the
focal sets are crisp).

In the finite case, let {α1 = 1 > · · · > αq ≥ 0} be
the ordered collection of distinct values of the membership
functions of focal sets Fi, i = 1, . . . , p (i.e., {α1 > · · · >
αq} = ∪i=1,...,p;x∈XµFi(x)). The degrees of belief and
plausibility of a fuzzy event A become:

Plm(A) =
p∑
i=1

m(Fi)
∑
αj

(αj − αj−1) max
w∈F

αj
i

µA(w) (3)

Belm(A) =
n∑
i=1

m(Fi)
∑
αj

(αj − αj−1) min
w∈F

αj
i

µA(w) (4)

with µA the membership function of the fuzzy event A (in
the case of classical events, this function takes only values
in {0, 1}).

Remark that this generalization of belief structures to
structures with fuzzy focal sets has another theoretical justi-
fication. In fact, it comes down to reducing a random fuzzy
set to a regular random set where each cut Fαji has mass
m(Fi)(αj − αj−1) [21]. In the continuous case [22], it is
equivalent to consider the convex combination of possibility
and necessity measures (viewed as continuous consonant
plausibility and belief functions) induced by πi.

C. Problem statement and illustration

In this paper, we will consider a set of N sources, each of
them providing a possibility distribution πi as their evaluation
of an unknown quantity x ∈ X . We will use maximal
coherent subsets to summarize the information and will then
work on the resulting structure. We note JNK = {1, . . . , N}
the set of natural numbers from 1 to N .

To illustrate our purpose, consider the following illustrative
example : four sources (experts, computer code, sensor,
. . . ) providing information in term of a best-estimate and
a conservative interval, and the possibility distributions are
supposed to have trapezoidal shapes. The information, rep-
resented in Figure 1, is summarized in Table I.

III. EXISTING FUSION RULES: A QUICK REVIEW

Fusion rules mainly follow three different kinds of behav-
iors [23]:

Conjunctive mode: comes down to retaining information
common to all sources. A conjunctive fusion rule pre-
supposes that all sources are reliable, which is often too
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TABLE I
EXAMPLE INFORMATION FROM SOURCES

Source Conservative interval Best estimate
1 [1,5] [2,4]
2 [1,13] [3,6]
3 [3,11] [7]
4 [5,13] [10,12]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.1
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0.3
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0.7

0.8

0.9

1
π1 π2 π3 π4

Fig. 1. Example distributions

optimistic. In case of conflicting information, such rules lead
to poorly reliable results and cannot be applied if the conflict
is total between some sources. In the context of possibility
theory, the conjunction reads

π∩ =
⋂

i=1,...,N

(πi)

where ∩ is a t-norm operator (often the minimum or the
product), which generalizes set-intersection.

Disjunctive mode: opposite to the conjunctive mode, it
performs the union of all (fuzzy) sets that model the pieces
of information provided by sources. It makes the pessimistic
assumption that at least one source is reliable, without
knowing which one. The pure disjunctive rule gives reliable
results, but they are often too imprecise to be really useful.
In possibility theory, it reads

π∪ =
⋃

i=1,...,N

(πi)

where ∪ is a t-conorm operator (often the maximum) gener-
alizing set-union.

Trade-off mode: this kind of fusion rule lies between
conjunctive and disjunctive mode, and is often used when
sources are partially conflicting. Usually, it tries to maintain
a good balance between reliability and informativeness. The
resulting possibility distribution π∗ of a trade-off rule is such
that

πmin < π∗ < πmax.

There are many possible trade-off rules, and we only recall
here the most commonly used (see [24] for a review of
existing trade-off rules in possibility theory, and [25] for
compromise aggregation operators in general).

Weighted arithmetic mean: It is the most popular and
commonly used trade-off combination. It reads

πWA =
N∑
i=1

λiπi

where λi can be considered as a measure of source i
reliability. Weighted average can be interpreted as a statistical
counting procedure, where a source i is considered as an
independent sample of weight λi. Many other trade-off
fusion rules are based on weighted average: Yager introduces
the use of ordered weighted average (OWA) in [26] and
proposes extensions in [27].

Adaptive rule: the aim of an adaptive rule is to pro-
gressively go from conjunctive to disjunctive behavior as
conflict between sources increases. In case of total conflict
(agreement) between sources, the conjunctive (disjunctive)
mode is retrieved. The following adaptive rule, proposed by
Dubois and Prade [28], is often used as a reference, even if
partially ad hoc:

πAD(x) = max
(
π(c∗)(x)
h(c∗)

,min(π(c∗)(x), 1− h(c∗))
)

(5)

with

h(T ) = sup
x

(
min
i∈T

πi(x)
)

c∗ = sup
T⊂JNK

(|T |, h(T ) = 1)

c∗ = sup
T⊂JNK

(|T |, h(T ) > 0)

h(c∗) = max(h(T ), |T | = c∗)

π(k)(x) = max
|T |=k

(
min
i∈T

πi(x)
)

with T ⊆ JNK a subset of sources, and |T | its cardinality.
c∗ is the greatest number of sources that completely agree
together (the cores of distributions intersect), while c∗ is the
greatest number of sources that partially agree together (the
supports of distributions intersect). Distribution π(k) is the
disjunction of conjunctions of distributions stemming from
subsets of k sources (it is equivalent to the t-norm min if
k = N , and to the t-conorm max if k = 1). h(T ) can
be interpreted as a measure of the agreement between the
sources in subset T (it is the height of the conjunction
between the distributions from sources in T ). h(c∗) is the
maximal level of agreement between sources in subsets of
size c∗. Equation (5) can thus be interpreted as a trade-
off between an optimistic (π(c∗)) and a pessimistic (π(c∗))
distribution, with the last one discounted by a level 1−h(c∗).

In [29], alternatives to Equation (5) that consider the
distance between possibility distributions are proposed. Their
aim is to account for the metric structure of space X , and to
ignore potential outliers. These alternatives mainly consist
of reformulating π(c∗) into a distribution π′(c∗), its shape
depending on a threshold distance d0 and on the distance
of a point from a consensus zone (e.g. the core of π(c∗)).
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A generalization of Equation (5) using the Hamacher t-
norm family (instead of operators max and min) is proposed
in [30]. In [31], another adaptive rule using reliability of
sources is proposed.

In the sequel, the new proposal is also an adaptive rule, in
the sense that it respectively reduces to a disjunction or a con-
junction when sources respectively conflict or agree together.
Nevertheless, an important difference with the schemes men-
tioned above is that instead of directly producing a final
synthetic possibility distribution, we propose to build a fuzzy
belief structure, more faithfully reflecting all the information
delivered by the multiple sources. The resulting structure
is theoretically meaningful but can be hard to handle in
practice, and we will propose practical tools to exploit it in
different ways (one of them being the construction of a final
synthetic possibility distribution that can then be compared
to the other proposals).

IV. A METHOD BASED ON MAXIMAL COHERENT SUBSETS
(MCS)

When no information is available about the sources relia-
bility, and when these sources are conflicting, a reasonable
fusion method should take account of the information pro-
vided by all sources (i.e. without discarding any). At the same
time, it should try to gain a maximum of informativeness.
The notion of maximal coherent subsets (MCS) is a natural
way to achieve these two goals. It consists of applying a
conjunctive operator inside each non-conflicting subset of
sources, and then to use a disjunctive operator between
the partial results [7], [32]. With such a method, as much
precision as possible is gained while not neglecting any
source, an attractive feature in information fusion problem.
We now explain in detail how this approach applies to
possibility distributions on the real line.

A. Computing maximal coherent subsets of intervals

Assume the set JNK of sources supply N intervals Ii =
[ai, bi], i = 1, . . . , N . Using the method of maximal coherent
subsets on these intervals comes down to finding every
maximal subset Kj ⊂ JNK of sources such that ∩i∈KjIi 6= ∅
and then to performing the union of these partial results
(i.e. ∪j ∩i∈Kj Ii). Algorithm 1, that finds maximal coherent
subsets, was given by Dubois et al. in [33]. Contrary to what
happens in logic (where the exhaustive search for maximal
coherent subsets of formulas is of exponential complexity),
once boundary values {ai, bi|i = 1, . . . , N} of all intervals
have been sorted out, the Algorithm 1 is linear in the number
of intervals, and thus computationally efficient.

The algorithm is based on increasingly sorting the interval
end-points into a sequence (ci)i=1,...,2N that is scanned in
this order. Each time (and only then) it meets an element ci
of type b, (i.e. the upper bound of an interval) followed by
an element ci+1 of type a (i.e. the lower bound of another
interval), a maximally coherent set of intervals is obtained.
Figure 2 illustrates the situation for α-cuts of level 0.5 of our
example. Using Algorithm 1, we find two maximal coherent

Algorithm 1: Maximal coherent subsets of intervals
Input: N intervals
Output: List of m maximal coherent subsets Kj

List = ∅ ;1

j=1 ;2

K = ∅ ;3

Order in an increasing order4

{ai|i = 1, . . . , N} ∪ {bi|i = 1, . . . , N} ;
Rename them {ci|i = 1, . . . , 2N} with type(i) = a if5

ci = ak and type(i) = b if ci = bk ;
for i = 1, . . . , 2N − 1 do6

if type(i) = a then7

Add Source k to K s.t. ci = ak ;8

if type(i+ 1) = b then9

Add K to List (Kj = K) ;10

j = j + 1 ;11

else12

Remove Source k from K s.t. ci = bk ;13

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I1

I2

I3

I4

a1 b1

a2 b2

a3 b3

a4 b4

(I1 ∩ I2)

(I2 ∩ I3 ∩ I4)

Fig. 2. Maximal coherent subsets on Intervals (0.5-cuts of example)

subsets : K1 = {I1, I2} and K2 = {I2, I3, I4}. After
applying the maximal coherent subset method, the result is
(I1 ∩ I2) ∪ (I2 ∩ I3 ∩ I4) = [2, 4.5] ∪ [7.5, 9], as pictured in
bold lines on the figure. They can be thought of as the most
likely intervals where the unknown value may lie.

B. Building the fuzzy belief structure

Now the information provided by the N sources are sup-
posed to be possibility distributions πi formally equivalent
to fuzzy intervals. At each level α, their α-cuts form a set
of N intervals Eαi . It is then possible to apply Algorithm 1
to them : Let Kα

j be the maximal subsets of intervals such
that

⋂
i∈Kα

j
Eαi 6= ∅. Define Eα as the union of the partial

results associated to Kα
j as suggested in [24] :

Eα =
⋃

j=1,...,f(α)

⋂
i∈Kα

j

Eαi (6)

where f(α) is the number of subsets Kα
j of maximal consis-

tent intervals at level α. In general, Eα is a union of disjoint
intervals, and it does not hold that Eα ⊃ Eβ ∀β > α.
So, the result is not a possibility distribution, since the sets
Eα are not nested. In practice, for a finite collection of
fuzzy intervals, there will be a finite set of p + 1 values
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0 = β1 ≤ . . . ≤ βp ≤ βp+1 = 1 such that the sets Eα will
be nested for α ∈ (βk, βk+1], k = 1, . . . , p. Algorithm 2
offers a simple method to compute threshold values βk. It
simply computes the height of min(πi, πj) for every pair of
possibility distributions πi, πj . Clearly, such a value is the
threshold above which πi and πj do not belong to the same
coherent subset anymore.

Algorithm 2: Values βk of fuzzy belief structure
Input: N possibility distributions πi
Output: List of values βk
List = ∅ ;1

i=1 ;2

for k = 1, . . . , n do3

for l = k + 1, . . . , n do4

βi = max(min(πk, πl)) ;5

i=i+1 ;6

Add βi to List ;7

Order List by increasing order ;8

If we apply the MCS method in (6) for all α ∈ (βk, βk+1],
we can build a non-normalized fuzzy set Fk with member-
ship range (βk, βk+1] (since sets Eα are nested in that range).
We can then normalize it (so as to expand the range to [0, 1])
by changing µFk(x) into

max(µFk(x)− βk, 0)
βk+1 − βk

while assigning weight mk = βk+1 − βk to this fuzzy focal
set. By abuse of notation, we still denote Fk these normalized
fuzzy focal sets in the sequel. Overall, we built a fuzzy belief
structure (F ,m) with weights mk bearing on normal focal
sets Fk. The weight mk can be interpreted as the confidence
given to adopting Fk as the information provided by all the
sources. Figure 3 illustrate the result on the example. The 0.5-
cut, is exactly the result of Figure 2. The result of Equation
(6) for each level α ∈ (0, 1] is in bold. The obtained fuzzy
belief structure is thus a meaningful “fuzzification” of the
MCS method used on classical intervals. Remark that if all
sources agree at least on one common value, the result is a
single fuzzy focal set equivalent to π(x) = mini=1,...,N πi(x)
(usual conjunction). On the contrary, if every pair of sources
is in a situation of total conflict (i.e. supx∈X min(πi, πj) =
0 ∀i 6= j), then the result is a unique fuzzy focal set π(x) =
maxi=1,...,N πi(x) (usual disjunction). Thus, as mentioned
before, the maximal coherent subset method has the behavior
of an adaptive rule.

Belief and plausibility measures can be derived for events
or fuzzy events from Equations (1)-(2) viewing the fuzzy
random set as a convex combination of standard continuous
consonant belief structures associated to the fuzzy focal sets.
For crisp events A, these equations come down to

Plm(A) =
p∑
i=1

m(Fi) sup
x∈A

πi(x); (7)

Belm(A) =
p∑
i=1

m(Fi) inf
x 6∈A

1− πi(x). (8)

The results of the MCS method can also be encoded in
the form of a continuous belief structure [22] defined by the
Lebesgue measure on the unit interval (α ∈ [0, 1]) together
with the mapping α → Eα. The associated basic belief
density will be denoted mc(Eα) = 1 ∀α ∈ [0, 1]. One can
then work on this continuous structure instead of working on
(F ,m). The corresponding plausibility and belief measures
are then defined as

Plc(A) =

1∫
0

sup
w∈Eα

µA(w) dα (9)

Belc(A) =

1∫
0

inf
w∈Eα

µA(w) dα (10)

where µA is the membership function of the (fuzzy) event A.
It can be proved that the two belief structures are equivalent.
First consider a random fuzzy interval of the real line
{(Fi,mi), i = 1, . . . , p}. Define αi+1 =

∑i
j=1mj ,∀i = 1, p

with α1 = 0. The corresponding continuous belief function is
defined by the Lebesgue measure on the unit interval together
with the mapping

α→ Eα = (Fi)φi(α),∀α ∈ (αi, αi+1],

where φ(α) = α−αi+1
mi

maps (αi, αi+1] to (0, 1]. Then we
can prove the following:

Theorem 1: ∀A ⊆ X,P lm(A)(=
∑p

1 miΠi(A)) =
Plc(A)

Proof: Denote by 1A the function with value 1 except
if A = ∅ where its value is 0. Let βi = φi(α) and notice
that dα = midβi. Then

Plc(A) =
∫ 1

0

1A∩Eαdα =
p∑
1

∫ αi+1

αi

1A∩(Fi)φi(α)
dα

=
p∑
1

∫ 1

0

1A∩(Fi)βi
midβi =

p∑
1

miΠi(A).

This formal result shows that the fuzzy belief structure
(F ,m) resulting from the fusion process can be reduced to an
equivalent convex combination of possibility measures or to a
continuous random set, and that the three structures have the
same informative content. These structures are theoretically
attractive and well represent the information delivered by
the sources. Nevertheless, such structures would be difficult
to interpret and have little utility for the analyst, due to
their complexity. We thus see the structure described in this
section and pictured in Figure 3 as a theoretically sound
model summarizing the (potentially conflicting) information
provided by the sources, from which can then be extracted,
by proper tools, useful and interpretable information. Such
tools are proposed in the next sections.
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Fig. 3. Result of maximal coherent subset method on example (—) and 0.5-cut (- - -)

C. Building a final possibility distribution

As we said, it is hard to directly use the fuzzy belief struc-
ture representation in practical problems (such as uncertainty
propagation through a mathematical model). In this case, a
method that derives a unique possibility distribution from a
fuzzy belief structure (F ,m) is needed.

A natural candidate is to build the contour function of the
obtained continuous belief structure:

∀x ∈ X, πc(x) = Pl(x) =
p∑
1

miπi(x), (11)

i.e. boils down to computing the weighted arithmetic mean
of the membership functions of (normalized) fuzzy focal
sets Fi, the weight of Fi being equal to mi. One can then
normalize the resulting distribution πc1 and/or take its convex
hull if needed.

Figure 4 shows the contour function πc and Figure 5
shows the same function, once normalized and convexified,
together with the fuzzy focal elements in the background. No
assumptions are made on source reliabilities or the metric
structure of the space. We can see on these figures that the
contour function πc and its (convexified) normalization can
directly be used by an analyst, and provide a summary of
the fuzzy belief structure (F ,m).

On our example, the final result is a bimodal distribution,
with one mode centered around value 8 and the other with a
value of 4, this last value being the most plausible. This is
so because these areas are the only ones supported by three
sources whose information are highly (even if not perfectly)
coherent. We can expect that the true value lies in one of
these two areas, but it is hard to tell which one. Indeed, in
this case, one should either take the normalized convex hull
of πc as the final representation of the parameter X , or find
out the reason for the conflict (if feasible).

1by computing π′c(x) = πc(x)/h(πc) where h(πc) is the height of πc
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Fig. 4. Contour function πc (—) with fuzzy focal sets (- - -)
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Fig. 5. Contour function, normalized (—) and convexified (- - -), with fuzzy
focal sets (gray lines)

V. PROPERTIES OF THE MCS METHOD

This section studies some properties of the MCS fusion
rule in the light of requirements proposed by Oussalah [34].
Similar properties were studied by Walley [8] in the more
general setting of imprecise probability. We use the same
terminology as in [34] (we put between parentheses the
name used in [8] for the same property when possible and
relevant). For simplicity of notation (and to make comparison
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with other fusion rules easier), we will refer in the property
definitions to the original distributions πi and their relation
with the resulting distribution πc given by Equation (11),
but we could have equally referred to the continuous belief
structure mc or the random fuzzy set (F ,m), except for
properties 10 and 12 which concern πc only. In the sequel,
ϕ denotes a general aggregation operator.
Prop. 1 ) Associativity (Aggregation of aggregates [8]): ϕ is

associative if ϕ(a, ϕ(b, c)) = ϕ(ϕ(a, b), c) . The
MCS method is not associative in general, and nei-
ther is its level-wise application to possibility dis-
tributions. Associativity is not verified in general
by trade-off rules, and by our method in particular.
It is also difficult to preserve under sophisticated
conflict management, that require all sources to be
considered at once. This property is quite useful
for local or step-by-step computations, and usually
allows to increase computational efficiency, but
requiring it limits the potential fusion rules that
can be used. Since the methodology proposed here
do not demand high computational effort, we do
not regard associativity as essential.

Prop. 2 ) Commutativity (Symmetry [8]): ϕ is commutative
if ϕ(a, b) = ϕ(b, a). Equation (6) does not depend
on a particular order of the distributions πi, thus
the MCS method is commutative. Commutativity
is necessary when sources cannot be ordered in a
sensible way (that is the case here).

Prop. 3 ) Idempotence: ϕ is idempotent if ϕ(a, a) = a.
After Equation (6), if the N sources supply the
same fuzzy interval, we retrieve it using the
MCS method, which is thus idempotent. When
aggregating possibility distributions, idempotence
can be seen as a cautious assumption in case of
possible source dependencies. In particular there
is no reinforcement effect when several sources
supply the same information. If independence
between sources must be acknowledged, one may
combine the possibility distributions πi, viewed as
consonant belief structures, using Dempster rule
of combination. It comes down to intersecting
the cuts Eαii for distinct values of αi, combining
the local mass functions multiplicatively. As this
may result in conflict, one can apply the MCS
method to such n-tuples of cuts, instead of doing
it using a the same threshold α for all sources.
In the case of two sources, note that it yields
focal sets of the form Eα1 ∩ E

β
1 if not empty

and Eα1 ∪ E
β
1 otherwise. This rule was already

proposed by Dubois and Prade in 1988 [23].
Note that such a combination would have an
exponential complexity, even on the real line.

Prop. 4 ) Weak zero preservation (Unanimity [8]): πc
satisfies weak zero preservation if πc ⊆
maxi=1,...,N (πi). This property states that if an

element is considered as impossible by all the
sources, then it is also impossible for the fusion
result. This property corresponds to the informal
requirement made in [31] that the support of the
resulting distribution should be included in the
union of the support of the source distributions.
This property is verified by all adaptive rules
(since they are equal to the disjunction only
in case of pair-wise total conflict between all
sources), and thus by the MCS method. Note that
this property is called strong zero preservation
in [34], but we choose to call it weak, since it puts
less constraints on the result than its (here) strong
counterpart. That a fusion rule should satisfy this
property seems sensible, since not satisfying it
would mean that information no sources provided
at first can be present in the fusion rule result.

Prop. 5 ) Strong zero preservation (Conjunction [8]): πc
satisfies weak zero preservation if πc ⊆
mini=1,...,N (πi). This property is verified when
an element is considered as impossible if it is
considered as impossible by at least one of the
sources. This property is not generally verified by
the SMC method. However, this property makes
sense only if sources agree together, thus we do
not regard it meaningful for an adaptive rule.
In fact, requiring this property comes down to
enforce a conjunctive behavior for the rule.

Prop. 6 ) Weak maximal plausibility (Indeterminacy [8]):
πc satisfies this property if πc ⊇ mini=1,...,N (πi).
A fusion rule verifies weak maximal plausibility if
an element considered as possible by all sources
is also considered possible by the fusion result.
We can check that MCS method verifies this
property (by an argument similar to the one used
for weak zero preservation). Similarly to weak
zero preservation, it seems sensible to require this
property from a fusion rule, since satisfying it
means that we want to be at least coherent with
the information on which all sources agree.

Prop. 7 ) Strong maximal plausibility (Total reconcilia-
tion [8]): πc satisfies this property if πc ⊇
maxi=1,...,N (πi). Strong interpretation of maxi-
mal plausibility is satisfied when an element is
considered as possible in the fusion result if it
is considered as possible by at least one of the
sources. Although this ensures that every source
will fully agree with the fusion result, this prop-
erty leads most of the time to results that are
too imprecise to be useful, since it enforces a
disjunctive behavior.

Prop. 8 ) Information relevance (Reconciliation and strong
reconciliation [8]): This property is informally
stated in [29] as the requirement that all distri-
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butions πi should be taken into account (unless
explicitly stated otherwise by additional assump-
tions). Similar properties are more formally stated
in [8], where they are called reconciliation and
strong reconciliation. Let I be any maximal con-
sistent subset of sources s.t. mini∈I(πi) 6= ∅, then
properties of reconciliation and strong reconcili-
ation are respectively satisfied (in our context) if
πc∩πi 6= ∅ i = 1, . . . , n and if πc∩

(⋂
i∈I πi

)
6= ∅

for any MCS I . By its definition, the MCS method
naturally satisfies (strong) reconciliation property.
These properties are clearly desirable if we have
no reason to discard some sources.

Prop. 9 ) Insensitivity to complete and relative igno-
rance [8]: Satisfying insensitivity to complete ig-
norance means that a source N+1 that provides no
information at all should not influence the fusion
result (i.e. πN+1(x) = 1 if x ∈ [l, u], 0 otherwise
where [l, u] is the whole domain). Insensitivity
to relative ignorance is a stronger version in
which a source N + 1 that provide information
implied by all the other sources taken together (i.e.
πN+1 ⊃ maxi=,...,N+1 πi) should not influence
the fusion result. Again, MCS method naturally
verifies these two properties (since a source N+1
as described above would be in every MCS). We
regard them as desirable, since not satisfying them
means that the result can get very imprecise from
the information of just one source.

Prop. 10 ) Convexity: This property is satisfied if the fusion
result is (fuzzy) convex (provided initial distribu-
tions are). This property is not generally satisfied
by the MCS method, but it is always possible to
take the convex hull of the result (which implies
losing some information). As for associativity,
convexity often simplifies mathematical and com-
putational treatments, but there is no obvious
theoretical reasons to require it.

Prop. 11 ) Robustness to small changes: This property means
that small changes made to the original distribu-
tions (e.g. horizontally shifting a distribution π(x)
to π′(x) = π(x + ε), coarsening or reducing the
support or the core of a distribution by a small
value ε, . . . ) should only cause a small change on
the final result. Since information is often approx-
imately modeled, this property is often considered
as desirable [29] (viz. the lack of robustness for
the rule given by Equation (5), studied in [29]).
Concerning the method proposed here, although
small changes can have an important impact for
a particular Eα by making a coherent maximal
subset no longer coherent, small changes will have
small impact on the overall structure (F ,m) and
on the distribution πc (most of the time, small
changes will only cause small shifts in values of

Fig. 6. Left : Equation (5) applied to two totally conflicting sources π1, π2

Right : Equation (5) applied to π′1(x) = π1(x − 0.05) and π′2(x) =
π2(x+ 0.05)

βk). Thus the MCS method is robust to small
changes in the shape of the distributions πi. Al-
though robustness is important in automatic fusion
procedures (where the result should be ensured to
be non-empty), it is not essential in other cases.

Prop. 12 ) Core insensitivity under high conflict: The fact
that, for some fusion rules, the core of the
resulting distribution can be sensitive to small
changes when data are highly conflicting has
been emphasized in [31]. As an example, Fig-
ure 6 illustrates the sensitivity of the resulting
core for Equation (5): When the two distributions
are conflicting, then the core of the resulting
distribution c(πAD) = c(π1 ∪ π2), but as soon
as min(π1, π2) 6= ∅, c(πAD) = c(min(π1, π2)).
With this kind of behavior, a value that both
sources judge very unlikely can suddenly become
the (only) most plausible value. This is indeed
quite adventurous, and means that the core of the
resulting distribution is not a continuous func-
tion of the conflict level. Nevertheless, even if
one value can suddenly shift from impossible to
the most plausible, the other values can remain
highly plausible, and similarly to robustness, we
do not regard this property as forcefully nec-
essary. In comparison, the core of πc resulting
from the MCS method does not exhibit such a
discontinuous behavior. Indeed, the core changes
from c(π1 ∪ π2) to c(min(π1, π2)) as h(π1, π2)2

come close to 1 (complete agreement). Figure 7
illustrates the behavior of the MCS rule as the
agreement level h between distributions π1, π2 of
Figure 6 increase (i.e. as π1 and π2 are respec-
tively shifted to the right and left). The figure
shows that the disjunctive part of the MCS is
dominant in the result until h = 0.5, after which
the conjunctive part becomes dominant in the
resulting distribution. For h = 0.5, disjunctive and
conjunctive parts balance each other.

To summarize, when information is (partially) conflicting
and when no specific assumptions can be made about the

2Note that h(T ) = sup
x

„
min
i∈T

πi(x)

«
is a measure of concordance

inside subset T
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Properties
1 2 3 4 5 6 7 8 9 10 11 12

Fusion Rule
min

√ √ √ √ √ √ √ √

max
√ √ √ √ √ √ √ √ √

AD
√ √ √ √ √

MCS
√ √ √ √ √ √ √ √

TABLE II
COMPARISON OF THE PROPERTIES OF THE SMC METHOD WITH OTHER RULES (AD : ADAPTIVE RULE, min: MINIMUM T-NORM, max: MAXIMUM

T-CONORM).

Fig. 7. Normalized final distribution πc for two sources, in function of
agreement level h

sources, we regard Properties 2, 3, 8, 9, 6, 4 as
strongly desirable. Properties 1 and 10 can be required if
computational efficiency is an issue, but we do not regard
them as necessary, since they can greatly limit the scope of
rules that can be used. Properties 5 and 7 are very strong
(since requiring them enforces the rule to follow specific
behaviors) and incompatible, thus we do not regard them as
desirable. Properties 11 and 12 are important in automatic
fusion procedures, but their necessity in other situations is
arguable. Outside automatic fusion procedures, we do not
regard them as forcefully desirable.

Table II summarizes the properties satisfied by the MCS
method in contrast with some other known fusion rules. It
satisfies all properties, except associativity, convexity, strong
versions of zero preservation and maximal plausibility, the
two latter being only satisfied in specific cases (respectively
when all sources totally agree or are totally conflicting, that
is when MCS method reduces to classical disjunction or
conjunction). The MCS method satisfies all the properties
of fusion rules that we regard as desirable, as well as some
others. Associativity is incompatible with adaptiveness and
convexity can hide the presence of conflict between sources.
Overall, the MCS method meets all requirements advocated
in [29], [31]. This fact indicates that the method is likely to
be useful in practical applications, and compete with other
rules.

VI. EXTRACTING USEFUL INFORMATION

The fuzzy belief structure (F ,m) resulting from the MCS
method is a good representation of the information provided
by the overall group of sources. But it can be hard to
draw conclusions or useful information directly from it (see
Figure 3 to be convinced) if not simplified using, for instance
the contour possibility distribution. However it has rich
content. In this section, we present various evaluations that
provide additional insights into the resulting information, and
can be of practical usefulness.

A. Finding groups of coherent sources

For each threshold in (βk, βk+1], merging the cuts ap-
plying Algorithm 1 exploits the same maximal coherent
subsets K(βk,βk+1]

j of sources. Changing the value of this
threshold yields a finite collection of coverings of the set of
sources. Increasing the threshold from 0 to 1, we go from
the largest sets of agreeing sources (i.e. those for which the
supports of distributions πi intersect), to the smallest sets
of agreeing sources (i.e. those for which cores intersect).
Subsets K(βk,βk+1]

j can be interpreted as clusters of sources
that agree up to a confidence level βk+1.

Analyzing these clusters can give some information as to
which groups of sources are consistent, i.e. agree together
with a high confidence level ( possibly using some common
evidence to supply information) and which ones are strongly
conflicting with each other (and which items of information
are plausibly based on different pieces of evidence). The
groups in our example are summarized in the following table

Subsets Clusters Max. Conf. level
K(0,0.4] [1, 2, 3][2, 3, 4] 0.4
K(0.4,0.66] [1, 2][2, 3, 4] 0.66
K(0.66,0.91] [1, 2][2, 3][4] 0.91
K(0.91,1] [1, 2][3][4] 1.0

In our example, only few conclusions can be drawn from
the clusters, showing that, if this kind of summary can be
useful, it is not sufficient. Results show that some sources
are totally conflicting (since there is more than one subset in
K(0,β1]), and that source 4 looks more isolated than the three
others (at a confidence level higher than 0.66, it is strongly
conflicting with all other sources). This type of analysis can
trigger further investigations on reasons for conflict.
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B. Measuring the gain in precision

It is interesting to measure how much precision is gained
by applying the MCS method to a set of N possibility
distributions. Let π∪ be the disjunction such that π∪ =
maxi=1,...,N πi. We consider that the overall imprecision of
the information provided by all the sources is equal to

IP = |π∪| =
∫
X

π∪(x)dx

where |π∪| is the fuzzy cardinality of π∪, an extension of
usual interval cardinality (the cardinality being a natural
candidate to measure imprecision). After fusion by the MCS
method, the imprecision of the resulting fuzzy belief function
can be measured as

IP ′ =
∑

mk|Fk|

The difference GP = IP − IP ′ quantifies the precision
gained due to the fusion process. This index is 0 in case
of total conflict and when the sources supply the same
possibility distribution. Indeed, the MCS method increases
the precision when sources are consistent with one another
but supply distinct pieces of information.

In our example, we have IP = 11.195, IP ′ = 5.412 and
the normalized index is 0.52, which indicates a reasonable
gain of precision after fusion.

Since fusion rule presented here is based on a level-wise
application of the maximal coherent subset methodology, it
is natural to investigate the behaviour of the level-wise gain
of precision. That is, we can compute, for each threshold α

IP (α) = |πα∪| IP ′(α) = |Eα|

where |πα∪| is the cardinality of the α-cut of π∪. Since
these evaluations depend on α, they can be viewed as
gradual numbers [35], [36]. A gradual number is formally
a mapping from (0, 1] to the real line R, such as IP (α)
and IP ′(α). Clearly, IP (α) measures the imprecision of
the continuous belief structure mE∪ which assigns to each
α ∈ [0, 1] the set Eα∪ =

⋃
i=1,...,N E

α
i (Eαi is the α-cut

of πi). IP (α) is a gradual evaluation the imprecision of
the belief structure resulting from the level-wise disjunction
of α-cuts. It is a monotonic gradual number. The gradual
number IP ′(α) measures the imprecision of mc likewise.
However it is generally neither continuous nor monotone.
The gradual number GP (α) = IP (α) − IP ′(α) is thus
a level-wise measure of the precision gained by applying
the maximal coherent subset method. The following equality
formalizes the link between these gradual numbers and their
scalar counterparts IP , IP ′ and GP :

IP =

1∫
0

IP (α)dα,

and likewise for IP ′ and GP . Since mk|Fk| =∫ βk
βk−1
|Eα|dα, we effectively have IP ′ =

∫ 1

0
IP ′(α)dα. The

validity of the other equality IP =
∫ 1

0
IP (α)dα follows

from the definition of fuzzy cardinality.

C. Group confidence in an event, in a source

Since we consider the fuzzy belief structure (F ,m) result-
ing from the MCS method as a good representative of the
group of sources, plausibility and belief functions of an event
A can be interpreted respectively as an upper and a lower
confidence level given to A by the sources. In particular, if
A = πi, plausibility and belief can be used to evaluate the
resulting upper and lower “trust” in the information given by
source i in view of all the sources.

In our example, values [Belm(πi), P lm(πi)] for sources 2
and 4 are, respectively, [0.38, 1] and [0, 0.93] (using Equa-
tions (2)-(1) or (10)-(9)). We see that information provided
by source 2 is judged totally plausible by the group, and
also strongly supported (source 2 is undoubtedly the less
conflicting of the four). Because one source completely
disagrees with source 4, its belief value drops to zero, but
the information delivered by it is nevertheless judged fairly
plausible (since source 4 is not very conflicting with sources
2 and 3).

Belief and plausibility functions are natural candidates
to measure the overall confidence in a source, but their
informativeness can sometimes be judged too poor. Indeed, if
a distribution πi given by a source i is in total conflict with
the others, the resulting fuzzy belief structure (F ,m) will
give the following measures for πi : [Belm(πi), P lm(πi)] =
[0, 1] (total ignorance). It means that in the presence of
strong conflict, the MCS method grants no confidence in
individual sources, even though no source can be individually
discarded. On the contrary, if the pieces of information are
fully consistent, Belm(πi) ≥ 0.5 and Plm(πi) = 1. Note
that it suffices that one source contradicts other globally
consistent sources for Belm(πi) to vanish because the MCS
method deteriorates precision (even if to a limited extent) in
the case of inconsistency.

An alternative to reduce this potential imprecision is to
take a fuzzy equivalent of the so-called pignistic probability,
namely

BetP (A) =
p∑
k=1

m(Fk)
|Fk ∩A|
|Fk|

(12)

where |Fk ∩A|/|Fk| is taken as the degree of subsethood
, also called relative cardinality, of the fuzzy set Fk in A,
with A a (fuzzy) event. This pignistic probability is zero if
A is strongly conflicting with every focal set Fk and one
if every Fk is included in A (here, Fk is included in A iff
µFk(x) < µA(x)∀x). In the example, Equation (12) applied
to sources 2 and 4 (A = π2 and A = π4) respectively gives
confidence 0.80 and 0.49, confirming that source 2 is more
trusted by the group than source 4.

Let us note that other formulas instead of |Fk ∩A|/|Fk|
could have been chosen to measure the subsethood of Fk
in A. Such other measures are considered in [37], [38].
One could also choose to consider the continuous random
set Eα and to use the continuous extension of the pignistic
probability proposed in [22], which would give yet another
result. Further research are needed to know the properties of



11

each of these measures and the relations existing between
them, and it is presently not clear when to choose one
measure rather than the others. From our standpoint, the
important criteria satisfied by these measures is that they are
consistent ways to measure the coherence of A with respect
to the fuzzy belief structure coming out from the MCS
method (e.g., in our example, source 2 would be judged more
reliable than source 4, irrespectively of the chosen formula
for the pignistic probability, and only the scalar evaluations
would change).

VII. TAKING ADDITIONAL INFORMATION INTO ACCOUNT

The fact that one needs no further information than the
distributions πi to apply the MCS method described above
is an advantage: this means that the method is applicable
to any situation where information is modeled by possibility
distributions and to any space X (not only the real line)3.

However, it is often desirable to account for reasonable
assumptions or some additional information (either about
the sources or the particularities of the underlying space)
when using the fusion rule. It can be assumptions related to
the credible number of reliable sources, the existence of a
metric on the space X , information about individual source
reliabilities,. . .

We thus propose such extensions of the MCS method,
that accommodate such assumptions or information in simple
ways.

A. Number of reliable sources

Suppose there is information on the number r of sources
that can be expected to be reliable, or at least that some
assumptions can be made about this number. Given the lower
bound r on the number of reliable sources, we propose to
adapt Equation (6) as follows

Eαr =
⋃

j=1,...,f(α),
|Kα
j |≥r

⋂
i∈Kα

j

Eαi (13)

where |Kα
j | is the number of sources in the maximal coherent

subset Kα
j . Namely, for each level α, only coherent subsets

which contain at least r sources are taken into account.
Using this threshold r, the contribution of isolated or small

groups of consistent sources is lessened. The proposed values
of r can of course be decreased or increased according to the
situation and the available information. Figure 8 illustrates
the fuzzy belief structure resulting from our example when
r = 2. This choice leads to discard all the information given
by source 4 after α = 0.66, as well as a small part of
source 3 information (modifying only focal sets F3 and F4

when compared to Figure 3). Our final structure is thus more
informative, as the (assumed) poorly reliable information
supporting values above 11 has been discarded.

3Note that Algorithm 1 is only applicable to completely (pre-)ordered
spaces X , and if X is a finite space, the continuous belief structure mc

just become a usual discrete belief function

B. Accounting for the reliability of sources

Suppose that some numerical evaluation of the reliability
of each source is available. Denote λi the reliability of source
i, and suppose, without loss of generality, that λi ∈ [0, 1],
value 1 meaning that the source is fully reliable, 0 represent-
ing a useless source. There are at least two ways of taking
this reliability indices into account, the first one increasing
the result imprecision by modifying (i.e. discounting) the
possibility distributions, the second one decreasing the im-
precision by discarding poorly reliable subgroups of sources:
• Discounting: discounting consists of transforming πi

into a distribution π′i whose imprecision increases all
the more as λi is low. In other words, the lower λi is,
the more irrelevant πi becomes. A common discounting
operation is:

π′i(x) = max(1− λi, πi(x))

Once discounted, sources are assumed to be reliable.
The effect of the discounting operation on MCS method
possesses a nice interpretation. Indeed, applying the
MCS method to discounted sources means that the
information modeled by πi will only be considered for
levels higher than 1−λi, since below that level, source i
is present in every subsets Kj , as no information coming
from it will be considered. A draw-back of this method
is that if values λi are too low, the result will be highly
imprecise.

• Discarding unreliable sources: assume the overall reli-
ability of a subgroup K is of the form

λK = ⊥i∈K(λi)

where ⊥ is a t-conorm. Choosing a particular t-conorm
to aggregate reliability scores then depends on the
dependence between the sources. For example, the t-
conorm⊥(x, y) = max(x, y) correspond to the cautious
assumption that agreeing sources are dependant (i.e. use
the same information), thus the highest reliability score
is not reinforced by the fact that other sources agree.
On the contrary, the t-conorm ⊥(x, y) = x + y − xy
(the dual of the product t-norm) can be associated to
the hypothesis that sources are independent (reliability
score increases as more sources agree together). A limit
value λ can then be fixed, such that only subsets of
sources having a reliability score over this limit are kept.
Equation (6) then becomes

Eαλ =
⋃

j=1,...,f(α),
λKα

j
≥λ

⋂
i∈Kα

j

Eαi (14)

Remark that this method does not modify the pieces of
information πi.

We now consider our example with λ1 = 0.2, λ2 = 0.6,
λ3 = 0.8,λ4 = 0.2. Figure 9 shows the result of the MCS
method after discounting (the bounds of the variation domain
are assumed to be [1, 14]). The result using discounting is
very different from the result obtained with the original
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Fig. 8. Result of MCS method with number of reliable sources r = 2
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Fig. 9. Result of MCS method with reliability scores λ = (0.2, 0.6, 0.8, 0.2) and discounting

method, and it is clear that distribution π′3 (i.e. the most
reliable source) dominate the others. Figure 10 shows the
result of discarding poorly reliable sources, where indepen-
dence is assumed and λ = 0.5. As we can see, the result
is this time very close to the result of Figure 8, except that
now all the information delivered by source 3 is taken into
account, due to its high reliability. Comparing Figure 8 to
Figure 3, we still have that only fuzzy focal sets F3 and
F4 are modified. From Figure 10, we can see that the fact
of discounting sources can have a significant impact on the
result.

C. Accounting for the metric

In the original MCS method, if an isolated source is totally
conflicting with the others, then it will constitute a maximal
coherent subset of its own. If the notion of distance makes
some sense in X (X is a metric space), this will be true
whatever the distance of the isolated source distribution from
the others is. As stressed in [29], it is sometimes desirable
to take the distance between distributions into account, with
the aim of neglecting the information lying outside a certain
zone. Let kα = maxj=1,...,f(α) |Kα

j | be the maximal number
of consistent sources at level α. Denote EKα

j
=
⋂
i∈Kα

j
Eαi .

At each level α a so-called consensus zone can be defined

as the interval:

EKα =
[
∪j,|Kα

j |=kα

(
EKα

j

)]
= [kα, kα]

where [ ] denote the convex hull of a collection of (possibly)
disjoint sets. Now, let A = [a, a], B = [b, b] be two intervals.
We define the closeness C(A,B) between A and B as

C(A,B) = inf
a∈A,b∈B

(d(a, b))

where d(a, b) is the distance between two points a and b of
the space X . Let us note that C(A,B) is not a distance
(it does not satisfy triangle inequality), but is a measure
of consistency between sets A and B accounting for the
metric. Indeed, it will be 0 as soon as A∩B 6= ∅. Since the
proposed method emphasizes the concept of consistency, this
choice looks sensible 4. Moreover, between two thresholds
βk, βk+1, the closeness C(EKα

j
, EKα

i
) between any two sets

EKα
j
, EKα

i
i 6= j is an increasing function of α, due to the

nestedness of these sets 5.
Like [29], the metric of the space can affect the MCS

method by fixing a distance threshold d0 to the consensus

4Genuine distances between sets like the Hausdorff distance are less
meaningful in our context.

5this would not be true for the Hausdorff distance.
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Fig. 10. Result of MCS method with reliability scores λ = (0.2, 0.6, 0.8, 0.2) and discarding of poor reliable subgroups (⊥(x, y) = x+ y − xy)
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Fig. 11. Result of MCS method taking metric into account with d0 = 1

zone, adapting Equation (6) as

EαC =
⋃

j=1,...,f(α),
C(EKα

j
,EKα )≤d0

⋂
i∈Kα

j

Eαi (15)

Pieces of information away from the consensus zone are
regarded as outliers and deleted. Figure 11 illustrates the
method when d0 = 1. Except F1, all fuzzy focal elements
are affected by the considered method. In the focal element
F3, distribution π4 is taken into account until α = 0.75 (After
this level, D(EKβ

j
,Kβ) < d0). In F2 and F4, the previous

contributions of respectively π1, π2 and of π3 are discarded.
Moreover, the structure (F ,m) is simplified and composed
of only two fuzzy sets (F1, F2 and F3, F4).

Except for the discounting technique (which affects the
shape of the distributions), all other adaptations result in
minor modifications of Equation (6). Thus, the methodology
is adapted to available information without modifying its
foundamental idea (i.e. using a level-wise notion of MCS).
This implies that computational costs of these adaptations are
not much higher than the costs of the original method. Except
for the variant involving discounting operations (which can
lead either to a gain or to a loss of information), all
adaptations lead to more informative results, corresponding
to the fact that more information is taken into account.

VIII. CONCLUSIONS

An adaptive method for merging possibility distributions,
based on the notion of maximal coherent subsets is pro-
posed. This method is simple (it can be applied without
any additional information, and its computational complexity
remains affordable) and the way it summarizes information
is conceptually attractive (maximal coherent subsets are the
best we can do in the presence of conflict). While most
existing fusion rules only aim at directly building a final
synthetic distribution from the initial ones, the result of
our method is a fuzzy belief structure from which useful
information can be extracted. The MCS method satisfies
natural requirements expected from an adaptive fusion rule,
while avoiding drawbacks of other fusion rules. Additional
information concerning source reliability can be accounted
for, and outlier information can be discarded from metric
considerations if needed.

Close links between fuzzy belief structures and continuous
belief structures have been exhibited, thus giving theoretical
grounds to the fusion rule. Moreover, these links show
how fuzzy random variables can be reinterpreted in term
of continuous random sets6. This allows to apply results
concerning random sets to fuzzy random variable.

6Provided fuzzy random variables are interpreted as first-level imprecise
probabilistic models
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We have proposed various ways to extract useful infor-
mation from the result of the fusion, making it usable for
non-expert analysts. More specifically, we concentrated on
how to characterize the situation in term of sources (which
sources agree/disagree and to which level, how to measure
information gain or overall confidence in each source). This
kind of information is useful to figure out where future
efforts should be spent ( finding the causes of a conflict,
or suspecting redundancy of sources, . . . ).

We have also proposed a means to get a final distribution
coherent with the available information, using the fuzzy
belief structure resulting from our method. This allows the
decision maker to build a synthetic distribution, easy to
understand and to manipulate, which is a good representative
of the information delivered by the sources. To summarize,
the proposed fusion rule is:
• Simple, generic and conceptually attractive
• Theoretically sound (i.e. not based on ad hoc consider-

ations)
• Flexible
• Useful both for synthesis and analysis of multiple in-

formation sources
Axiomatic and theoretical aspects of the MCS method are

discussed in this paper. It still remains to validate its use
in practical applications in contrast with other fusion rules.
We plan to use this method to analyze information issued
from the benchmark BEMUSE [39], concerning uncertainty
analysis of thermal-hydraulic codes in nuclear safety.
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