
COMPUTING EXPECTATIONS WITH CONTINUOUS P-BOXES:
UNIVARIATE CASE

LEV UTKIN AND SEBASTIEN DESTERCKE

Abstract. Given an imprecise probabilistic model over a continuous space,
computing lower/upper expectations is often computationally hard to achieve,
even in simple cases. Because expectations are essential in decision making
and risk analysis, tractable methods to compute them are crucial in many ap-
plications involving imprecise probabilistic models. We concentrate on p-boxes
(a simple and popular model), and on the computation of lower expectations
of non-monotone functions. This paper is devoted to the univariate case, that
is where only one variable has uncertainty. We propose and compare two
approaches : the first using general linear programming, and the second us-
ing the fact that p-boxes are special cases of random sets. We underline the
complementarity of both approaches, as well as the differences.

1. Introduction

There are many situations where a unique probability distribution cannot be
identified to describe our uncertainty about the value assumed by a variable on a
state space. This can happen for example when data or expert judgments are not
sufficient and/or are conflicting. In such cases, a solution is to model information by
the means of imprecise probabilities, that is by considering either sets of probabil-
ity distributions [17, 14] or bounds on expectations [18]. Note that, from a purely
mathematical point of view, such representations encompass many other frame-
works dealing with the representation of incomplete and conflicting information,
such as random sets [7] and possibility theory [12].

When considering such models, the expectation of a real-valued bounded func-
tion over the state space is no longer precise and is lower- and upper-bounded by
some value. In applications involving risk analysis or decision making, the decision
process will be based on the values of these lower and upper expectations, using
extensions of the classical expected utility criterion [25]. When the state space on
which the variable assumes its value is finite, lower and upper expectations can be
numerically computed by using, for instance, linear programming techniques [26].
The problem becomes quite more complicated when uncertainty models are defined
over infinite state spaces (e.g., the real line, product spaces, . . . ).

In this latter case, computing exactly and analytically the lower and upper
expectations of a given function is impossible most of the time, and there are
very few methods and algorithms around to compute approximations of these
bounds [4, 21, 24]. In this paper, we study such analytical solutions for a specific
case, that is the one where the uncertainty over a variable is described by a pair of
upper and lower cumulative distributions (a so-called p-box [13]). In essence, such
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a study comes down to search the extremal points of the p-box for which the expec-
tation bounds are reached. The features of these solutions also allow us to suggest
some ways to build more efficient numerical methods and algorithms, useful when
analytical solutions cannot be computed. We also assume that the function over
which lower and upper expectations have to be computed can be non-monotone but
has a (partially) known behaviour. In this paper, we concentrate on the univariate
case, i.e., where the value assumed by only one variable is tainted with uncertainty.
The multivariate case as well as the case of mixed strategies (expectation bounds
computed over mixture of functions) are left for forthcoming papers.

P-boxes are one of the simplest and most popular models of sets of probability
distributions, directly extending cumulative distributions used in the precise case.
P-boxes are often used in applications [16], as they can be easily derived from small
samples [3] or from expert opinions expressed in terms of imprecise percentiles.
consequently, our study is likely to be useful in many practical situations. P-box
models can also be found in robust Bayesian analysis, where they are known as
distribution band classes [2]. In other cases, the poor expressiveness of p-boxes
compared to more general sets of probabilities is clearly a limitation [8]. However,
as we shall see, their simplicity allows for more efficient computations, and they
can provide quick first approximations. Eventually, if these first approximations
already allow to take a decision, there is no need to consider more complex (and
computationally demanding) models.

Methods developed in the paper are based on two different approaches, and
we found it interesting to emphasize similarities and differences between these ap-
proaches, as well as how one approach can help the other: the first is based on
the fact that the computation of bounding expectations can be viewed as a linear
programming problem, while the second uses the fact that a p-box is a particular
case of a random set [16, 8]. Approximating lower and upper expectations with
these approaches mainly consists in discretizing the uncertainty models. In this
sense, they are different from other approaches discretizing the state space [21, 24].

We first state the general problem in Section 2, how to solve it by using linear
programming and random sets, and introduce the problem of conditioning by an
observed event. We then study the computation of lower/upper expectations of
a function over the p-box for different behaviours. Going from the simplest case
to the most general one, we start with monotone functions in Section 3, pursue
with functions having one extrema in Section 4, and finish by general (bounded)
continuous functions in Section 5.

2. General problem statement

We assume that the information about a (real-valued) random variable X is (or
can be) represented by a lower F and upper F cumulative probability distributions
defining the p-box [F , F ] [13]. Lower F and upper F distributions thus define a set
Φ(F , F ) of precise distributions such that

(1) Φ(F , F ) = {F |∀x ∈ R, F (x) ≤ F (x) ≤ F (x)}.

Given a function h(X), lower (E) and upper (E) expectations over [F , F ] of h(X)
can be computed by means of a procedure sometimes called natural extension [30,
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31], which corresponds to the following equations:

E(h) = inf
F∈Φ(F,F )

∫
R
h(x)dF ,E(h) = sup

F∈Φ(F,F )

∫
R
h(x)dF.(2)

Computing the lower (resp. upper) expectation can be seen as finding the ex-
tremizing distribution F inside Φ(F , F ) reaching the infimum (resp. supremum) in
Equations (2). If we consider the convex set of probabilities induced by Φ(F , F ),
this is equivalent to find the extremum point (i.e., vertex) of this convex set where
the bounds are reached, among all vertices (here infinitely many). Solving Equa-
tions (2) exactly is usually very difficult, although sometimes possible, even when
analytical expressions of h, F , F are known. In practice, numerical methods must
often be used to solve the problem and estimate both the upper and lower ex-
pectations. Upper and lower expectations are dual [31, ch.2.], in the sense that
E(h) = −E(−h). This will allow us to concentrate only on the lower expectations
for some cases studied in the sequel. We now detail the two generic approaches
used throughout the paper to solve the above problem. Note that, through all the
paper, we assume that we restrict ourselves either to σ-additive probabilities or to
continuous functions h, as such assumptions are not, from a practical standpoint,
very limiting.

We will denote by IA the indicator function of the set A, that is the function such
that IA(x) = 1 if x ∈ A, zero otherwise. The lower (resp. upper) expectation of
this function, E(IA) (resp. E(IA)), have the same value as the lower (resp. upper)
probability P (A) (resp. P (A) of the event A induced by the set Φ(F , F ).

2.1. Linear programming view. Although we assume that the readers have ba-
sic knowledge of linear programming (for an introduction to the topic, see for ex-
ample Vanderbei [29]), we will recall basic results coming from this theory when
they are used in the paper.

As sets of probabilities can be expressed through linear constraints over expec-
tations, and as expectation is a linear functional, it is quite natural to translate
Equations (2) into linear programs. The linear programs corresponding to lower
expectation are summarized below.

Primal problem: Dual problem:

Min. v =
∞∫
−∞

h (x) ρ (x) dx Max. w = c0 +
∞∫
−∞

(
−c (t)F (t) + d (t)F (t)

)
dt

subject to subject to

ρ (x) ≥ 0,
∞∫
−∞

ρ (x) dx = 1, c0 +
∞∫
x

(−c (t) + d (t)) dt ≤ h (x) ,

−
x∫
−∞

ρ (x) dx ≥ −F (x) , c0 ∈ R, c (x) ≥ 0, d (x) ≥ 0.
x∫
−∞

ρ (x) dx ≥ F (x) .

Where v and w are the objective functions to respectively minimize and maximize
for the primal and dual problems, and ρ (x) is a probability density function having
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a cumulative distribution inside Φ(F , F ). Since both the primal and dual problems
are feasible (i.e. have solutions satisfying their constraints), then their optimal
solutions coincide (due to strong duality [29, Ch.5]) and are equal to E(h).

Numerically solving the above problem can be done by approximating the prob-
ability distribution function F by a set of N points F (xi), i = 1, ..., N , and by
translating equations (2) into the corresponding linear programming problem with
N optimization variables and where constraints correspond to equation (1). Those
linear programming problems are of the form

E∗(h) = inf
N∑
k=1

h(xk)zk or E∗(h) = sup
N∑
k=1

h(xk)zk(3)

subject to

zi ≥ 0, i = 1, ..., N,
N∑
k=1

zk = 1,

i∑
k=1

zk ≤ F (xi),
i∑

k=1

zk ≥ F (xi), i = 1, ..., N.

where the zk are the optimization variables, and objective function E∗(h) (resp.
E∗(h)) is an approximation of the lower (resp. upper) expectation. Note that the
primal problem may not always be feasible (e.g., consider N = 1 and F (x1) −
F (x1) < 1) if N is too small or values xi are badly chosen. Also, the inequality
E(h) ≤ E∗(h) (or its converse) does not always hold when solving the above dis-
cretized problem. The approximated solution E∗ is thus not a guaranteed inner or
outer approximation. A solution to obtain a guaranteed inner approximation is to
replace, for i = 1, . . . , N , F (xi) by F (xi+1) in constraints

∑i
k=1 zk ≥ F (xi), with

F (xN+1) = 1, since in this case, any solution to the linear program would be such
that, for any x ∈ [xi, xi+1],

F (x) ≤ F (xi+1) ≤
i∑

k=1

zk ≤ F (xi) ≤ F (x),

consequently the (discrete) cumulative distributions formed by the values zk, k =
1, . . . , N is in Φ(F , F ). However, for this linear program to have a solution, we
must be able to choose the xi, i = 1, . . . , N on R such that F (xi) ≥ F (xi+1). In
addition to not be always possible, this puts necessary constraints over the chosen
discretization of R.

Let us write now the dual linear programming problem for computing E∗∗(h),
taking points yi different from xi,

(4) E∗∗(h) = max

(
c0 +

N∑
i=1

(
diF (yi)− ciF (yi)

))
subject to c0 ∈ R, ci ≥ 0, di ≥ 0, and

c0 +
N∑
k=i

(dk − ck) ≤ h(yi), i = 1, ..., N,

where c0, ci, di are the optimization variables, yi = (xi−1 + xi)/2.
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When both problems are discretized, equality between their optimal solutions
no longer holds, but converge towards the same value as N grows. To approximate
the solution, one can let N grow iteratively until the difference |E∗(h)− E∗∗(h)|
is smaller than a given value ε > 0 characterizing the accuracy of the solutions.
However, this way of determining the lower and upper expectations meets some
computation difficulties if many iterations are needed and if the value of N is
rather large. Indeed, the primal optimization problem have N variables and 3N+1
constraints. On the other hand, solving the primal and dual approximated problems
only once with a small value of N can lead to bad approximations of the exact value.
Also important is the question of how to choose or sample the values xi to improve
numerical convergence? In other words, is there some regions that should be more
sampled than others. A generic algorithm (for E) would look as follows:

(1) Fix a precision threshold ε and an initial value of N
(2) Sample N values xi s.t. F (xi) > 0 and F (xi) < 1
(3) Compute E∗(h) and E∗∗(h)
(4) If |E∗(h)− E∗∗(h)| ≤ ε, stop, else increase N and return to step 2.

In the sequel, we will see that knowing h and its behaviour can significantly
improve both accuracy and efficiency of expectation bound computations. It also
provides some insight as to how values xi could be sampled.

2.2. Random set view. Now that we have given a global sketch of the linear
programming approach, we can detail the one using random sets. Formally, a
random set is a mapping Γ from a probability space to the power set ℘(X) of
another space X, also called a multi-valued mapping. This mapping induces lower
and upper probabilities on X [7]. Here, we consider the unit interval [0, 1] equipped
with Lebesgue measure as the probability space, and ℘(X) are the measurable
subsets of the real line R.

Given the p-box [F , F ], we will denote Aγ = [a∗γ , a∗γ ] the set such that

a∗γ := sup{x ∈ R : F (x) < γ} = F
−1

(γ),

a∗γ := inf{x ∈ R : F (x) > γ} = F−1(γ),

R

1

F

γ

a∗γ a∗γ

Aγ

F

Figure 1. P-box as random set, illustration



6 L. UTKIN AND S. DESTERCKE

By extending existing results [16, 13] to the continuous real line [9, 1], we can
conclude that the p-box [F , F ] is equivalent to the continuous random set with a
uniform mass density on [0, 1] and a mapping (see figure 1) such that

Γ(γ) = Aγ = [a∗γ , a∗γ ], γ ∈ [0, 1].

Note that both F
−1

(γ), F−1(γ) are non-decreasing functions of γ. The interest of
this mapping Γ is that it allows us to rewrite equations (2) in the following form:

E(h) =
∫ 1

0

inf
x∈Aγ

h(x) dγ,(5)

E(h) =
∫ 1

0

sup
x∈Aγ

h(x) dγ.(6)

Again, finding analytical solutions of such integrals is not easy in the general
case, but numerical approximations can be computed (with more or less difficulty)
by discretizing the p-box on a finite number of levels γi, the main difficulty in the
general case being to find the infimum or supremum of h(X) for each discretized
level. Note that, in the finite case, a random set can be represented by non-null
weights, here denoted m, given to subsets of space X and summing up to one (i.e.,∑
E⊆X m(E) = 1). Let γ0 = 0 ≤ γ1 ≤ . . . ≤ γM = 1 and define the discrete

random set Γ such that for i = 1, . . . ,M

Γ :=
{

Aγi = [a∗γi−1 , a
∗
γi ],

m(Aγi) = γi − γi−1

We denote by Φ(F , F )Γ the set of precise distributions induced by Γ. This dis-
cretization, which is an outer approximation of the p-box [F , F ] (i.e., Φ(F , F ) ⊂
Φ(F , F )Γ), is sometimes referred to as the ODM (Outer discretization Method) and
has been studied by other authors [23]. Working with Γ, Equations (5), (6) can be
rewritten as

EΓ(h) =
M∑
i=1

m(Aγi) inf
x∈Aγi

h(x) and EΓ
(h) =

M∑
i=1

m(Aγi) sup
x∈Aγi

h(x).

Let us now define another discrete random set Γ such that for i = 1, . . . ,M

Γ :=
{
Aγi = [a∗γi , a

∗
γi−1

] if a∗γi ≤ a∗γi−1
, ∅ otherwise

m(Aγi) = γi − γi−1

We denote by Φ(F , F )Γ the set of precise distributions induced by Γ. Γ is an inner
approximation of the p-box (i.e., Φ(F , F )Γ ⊂ Φ(F , F )), and Equations(5), (6) can
again be rewritten

EΓ(h) =
M∑
i=1

m(Aγi) inf
x∈Aγi

h(x) and EΓ
(h) =

M∑
i=1

m(Aγi) sup
x∈Aγi

h(x).

Note that when there is an index i for which Aγi = ∅, Γ does no longer describe a
non-empty set of probabilities, and we will name such a random set inconsistent.
This case can be compared to the case when the linear program giving guaranteed
inner approximation has no feasible solutions.

We have that EΓ(h) ≤ E(h) ≤ EΓ(h) (due to inclusions Φ(F , F )Γ ⊂ Φ(F , F ) ⊂
Φ(F , F )Γ ). Thus, to approximate the solution we can again let M grow until
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|EΓ(h) − EΓ(h)| is smaller than a given accuracy ε > 0. As in the case of lin-
ear programming, choosing too few levels γi or using poor heuristics to find the
infinimum/supremum over sets can lead to bad approximations, and if those infin-
imum/supremum are hard to find, computational difficulties can arise. A generic
algorithm (for E) using random sets would be as follows

(1) Fix a precision threshold ε and an initial value of M
(2) Sample M values γi
(3) Compute EΓ(h) and EΓ(h)
(4) If |EΓ(h)− EΓ(h)| ≤ ε, stop, else increase M and return to step 2.

Note that the distance between two consecutive γi, γi+1 does not have to be con-
stant. If Γ is inconsistent, an alternative is to use one of the two random sets Γ1,Γ2

such that for i = 1, . . . ,M

Γ1 :=
{
Aγi,1 = [a∗γi−1 , a

∗
γi−1

],
m(Aγi,1) = γi − γi−1,

Γ2 :=
{

Aγi,2 = [a∗γi , a
∗
γi ],

m(Aγi,2) = γi − γi−1.

The corresponding approximations read, for j = 1, 2,

EΓj (h) =
M∑
i=1

m(Aγi,j ) inf
x∈Aγi,j

h(x) and EΓj (h) =
M∑
i=1

m(Aγi,j ) sup
x∈Aγi,j

h(x).

Compared to Γ, Γ1,Γ2 have the advantage to always be consistent, but the obtained
approximations can either outer- or inner-approximate the exact values, even if they
converge towards it as M increases.

2.3. Conditional lower/upper expectations. Another quite common problem
when dealing with imprecise probabilities is the procedure of conditioning and the
computations of associated lower/upper conditional expectations. Suppose that we
observe an event B = [b0, b1]. Then the lower and upper conditional expectations,
given the p-box [F , F ] and under condition of B, can be determined as follows:

E(h|B) = inf
F≤F≤F

∫
R h(x)IB(x)dF∫

R IB(x)dF
,

E(h|B) = sup
F≤F≤F

∫
R h(x)IB(x)dF∫

R IB(x)dF
.

The above formulas are equivalent to applying Bayes formula to every probability
measure inside Φ(F , F ), and then retrieving the optimal bounds. Other general-
isations of Bayes formula to imprecise probabilistic framework exist [11, 31], but
we will restrict ourselves to the above solution, as it is by far the most used within
frameworks using lower/upper expectation bounds. Also, we assume that B is
large enough (or the two distributions [F , F ] close enough) so that F (b1) > F (b0).
This is equivalent to require P (B) > 0, thus avoiding conditioning on an event of
probability 0. Indeed, there are still some discussions about what should be done
in presence of such events (see Miranda [18] for an introductory discussion and
Cozman [5] for possible numerical solutions).

Similarly to unconditional expectations, the above problems can numerically be
solved by approximating the probability distribution function F by a set of N
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points F (xi), i = 1, ..., N , and by writing linear-fractional optimization problems1

and then associated linear programming problems. Problems mentioned for the
unconditional case can again occur. The next proposition indicates that previous
results can be used to provide a more attractive formulation of E(h|B),E(h|B).

Proposition 1. Given a p-box [F , F ], a function h(x) and an event B, the upper
and lower conditional expectations of h(X) on [F , F ] after observing the event B
can be written

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1
β − α

Ψ(α, β),(7)

E(h|B) = inf
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1
β − α

Φ(α, β),(8)

with

Ψ(α, β) =
∫ β

α

sup
x∈Aγ∩B

h(x)dγ.

Φ(α, β) =
∫ β

α

inf
x∈Aγ∩B

h(x)dγ.

General proof. We consider only upper expectation. We do not know how the
extremizing distribution function behaves outside the interval B. Therefore, we
suppose that the value of the extremizing distribution function at point b0 is F (b0) =
α ∈ [F (b0), F (b0)] and its value at point b1 is F (b1) = β ∈ [F (b1), F (b1)] (see Fig.
4). Then there holds ∫

R
IB(x)dF (x) = β − α.

Hence, we can write

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

F≤F≤F

1
β − α

∫
R
h(x)IB(x)dF (x)

= sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1
β − α

 sup
F≤F≤F
F (b0)=α
F (b1)=β

∫
R
h(x)IB(x)dF (x)


= sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1
β − α

∫ β

α

sup
x∈Aγ∩B

h(x)dγ.(9)

By using the results obtained for the unconditional upper expectation, we can see
that the integrand is equal to Ψ(α, β). The lower expectation is similarly proved.

�

1Problems where the objective function is a fraction of two linear functions and constraints
are linear.
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As value β −α increases in Equations (7)-(8), so do the numerator and denomi-
nator, thus playing opposite role in the evolution of the objective function. Hence,
in order to compute the upper (resp. lower) conditional expectation, one has to
find the values β and α such that any increase (decrease) in the value β − α is
greater (resp. lower) than the corresponding increase (resp. decrease) in Ψ(α, β)
(Φ(α, β)).

A crude algorithm to approximate the solution would be to samples different
values α ∈ [F (b0), F (b0)] and β ∈ [F (b1), F (b1)], evaluating Equations (7)-(8) for
all combination [α, β] and retaining the highest obtained value (note that we can
have F (b0) ≥ F (b1), hence the need to make sure by adding constraint that [α, β]
is not void).

Another interesting point to note is that the proof takes advantage of both views,
since the idea to use levels α and β comes from fractional linear programming, while
the final equation (9) can be elegantly formulated by using the random set view.

In any cases (lower/upper and conditional/unconditional expectations), it is ob-
vious that the extremizing probability distribution F providing the minimum (resp.
maximum) expectation of h depends on the form of the function h. If this form
follows some typical cases, efficient solutions can be found to compute lower (resp.
upper) expectations. The simplest examples (for which solutions are well known)
of such typical cases are monotone functions.

3. The simple case of monotone functions

We first consider the case where h is a monotone function that is non-decreasing
(resp. non-increasing) in R. We will also introduce the running example used
throughout the paper.

3.1. Unconditional expectations. In the case of a monotone non-decreasing
(resp. non-increasing) function, existing results [31] tell us that we have:

E(h) =
∫

R
h(x)dF

(
E(h) =

∫
R
h(x)dF

)
,(10)

E(h) =
∫

R
h(x)dF

(
E(h) =

∫
R
h(x)dF

)
,(11)

and we see from (10)-(11) that lower and upper expectations are completely de-
termined by bounding distributions F and F . Using equations (5)-(6), we get the
following formulas

E(h) =
∫ 1

0

h(a∗γ)dγ
(

E(h) =
∫ 1

0

h(a∗γ)dγ
)
,(12)

E(h) =
∫ 1

0

h(a∗γ)dγ
(

E(h) =
∫ 1

0

h(a∗γ)dγ
)
,(13)

which are the counterparts of equations (10)-(11). Here, expectations are totally de-
termined by extreme values of the mappings. When h is non-monotone, equations
(10)-(13) only provide inner approximations of E(h),E(h). When using numeri-
cal procedures over monotone functions, there appears to be no specific sampling
strategies of values that would allow for faster convergence.

We now introduce the example that will illustrate our results all along the paper.
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Example 1. Assume that we have to estimate the loss incurred by the failure
of a unit of some industrial item. Suppose that this loss is the function of time
h(x) = 20 − x, and it is known that the unit time to failure is governed by a
distribution whose bounds are exponential distributions with a failure rate 0.2 and
0.5 (note that only the bounds are of exponential nature). h is decreasing and
can, for example, model the fact that the later the unit fails, the less it costs to
replace it. Let us compute the expected losses as the expectation of h. The lower
and upper distribution functions of the unit time to failure are 1− exp(−0.2x) and
1− exp(−0.5x), respectively. Hence

E(h) =
∫ ∞

0

(20− x)d(1− exp(−0.5x)) =
∫ ∞

0

(20− x)0.5e−0.5xdx = 18,

E(h) =
∫ ∞

0

(20− x)d(1− exp(−0.2x)) =
∫ ∞

0

(20− x)0.2e−0.2xdx = 15.

Finally, we obtain that the expected losses are in the interval [15, 18].
Let us use the random set approach. Since F

−1
(γ) = −2 ln(1 − γ) = a∗γ and

F−1(γ) = −5 ln(1− γ) = a∗γ , then

E(h) =
∫ 1

0

(20 + 2 ln(1− γ))dγ = 18,

E(h) =
∫ 1

0

(20 + 5 ln(1− γ))dγ = 15.

We get the same values of the lower and upper expectations of h.

3.2. Conditional expectations. We now consider that we want to know the lower
and upper expectations in the case where event B = [b0, b1] occurs. That is, we want
to compute Equations (7), (8) for a monotone h. Lower and upper expectations
are then given by the following proposition.

Proposition 2. Given a p-box [F , F ], a monotone function h(x) and an event B,
the upper and lower conditional expectation of h(X) on [F , F ] after observing the
event B can be written

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1
β − α

∫ β

α

sup
x∈Aγ∩B

h(x)dγ

=
1

F (b1)− F (b0)

(∫ b1

F−1(F (b0))

h(x)dF (x) + h(b1)
(
F (b1)− F (b1)

))
,

E(h|B) = inf
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1
β − α

∫ β

α

inf
x∈Aγ∩B

h(x)dγ

=
1

F (b1)− F (b0)

(
h(b0)

(
F (b0)− F (b0)

)
+
∫ F

−1
(F (b1))

b0

h(x)dF (x)

)
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if h is non-decreasing and

E(h|B) =
1

F (b1)− F (b0)

(
h(b0)

(
F (b0)− F (b0)

)
+
∫ F

−1
(F (b1))

b0

h(x)dF (x)

)
,

E(h|B) =
1

F (b1)− F (b0)

(∫ b1

F−1(F (b0))

h(x)dF (x) + h(b1)
(
F (b1)− F (b1)

))
,

if h is non-increasing.

Proof. We will only prove the upper expectation for non-decreasing function h.
Lower expectation can be derived likewise, and the case of non-increasing functions
is then obtained by using duality between lower and upper expectations.

When h is non-decreasing, we know that supx∈Aγ∩B h(x) is a non-decreasing
function of γ that coincides with F−1. Using the integral mean value theorem, we
know that there exists some z ∈ [b0, b1] such that E(h|B) = h(z), whatever the
choice of α, β. For maximizing E(h|B), values α, β should be chosen so that the
retained values z and h(z) (coinciding with F−1) are as high as possible. As h is
non-decreasing, this corresponds to values α = F (b0), β = F (b1), which settles the
denominator of the objective function. We then have∫ β

α

sup
x∈Aγ∩B

h(x)dγ =
∫ b1

F−1(F (b0))

h(x)dF (x) + h(b1)
(
F (b1)− F (b1)

)
,

because for values γ ∈ [F (b0), F (b1)], supremum of h(x) on Aγ ∩B is obtained for
x = F−1(γ), while for γ ∈ [F (b1), F (b1)], supremum of h(x) = b1. �

R

1

F

α

β

bo B b1
1 2 3 4 5 6 7 8 9 10

0.2
0.4
0.6
0.8

F

Optimal F for E(h|B)

R

1

F
α

β

bo B b1

1 2 3 4 5 6 7 8 9 10

0.2
0.4
0.6
0.8

F

Optimal F for E(h|B)

Figure 2. Conditional expectations with monotone non-
increasing functions

Example 2. We consider the same p-box [F , F ] and function h as in Example 1,
but now we consider that we want to know the incurred loss in case x ∈ B = [1, 8],
that is the failure is supposed to happen between 1 and 8 units of time. We have

F (b0) = 1− exp(−0.2 · 1) = 0.18, F (b0) = 1− exp(−0.5 · 1) = 0.39,

F (b1) = 1− exp(−0.2 · 8) = 0.8, F (b1) = 1− exp(−0.5 · 8) = 0.98,
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and we get

E(h|B) =
1

0.8− 0.18

(
(20− 1) (0.39− 0.18) +

∫ F
−1

(0.8)

1

(20− x)0.5e−0.5xdx

)
= 18.298,

E(h|B) =
1

0.98− 0.39

(
(20− 8) (0.98− 0.8) +

∫ 8

F−1(0.39)

(20− x)0.2e−0.2xdx

)
= 14.219.

Note that, if we compare above values with those of Example 1, we have [E(h),E(h)] ⊂
[E(h|B),E(h|B)].

The above results indicate that, when h is monotone, computing lower/upper ex-
pectations exactly remains easy. Also, when using numerical methods, they provide
insight as to how values should be sampled. For example, when computing upper
conditional expectation by linear programming, values only need to be sampled
in [b0, F

−1
(b1)], and b0 should be among the sampled values, since an important

probability mass is concentrated at this value (see Fig. 2). When using random
set approach and discretizing the unit interval [0, 1], one should take γ1 = Fb0
and γ2 = F (b0), and not consider finer discretization of this interval, as this would
not increase the precision. As we shall see, similar results can be derived for more
complex cases.

4. Function with one maximum

In this section, we study the case where the function h has one maximum at
point a, i.e. h is increasing (resp. decreasing) in (−∞, a] (resp. [a,∞)). The case
of h having one minimum follows by considering the function −h and the duality
between lower and upper expectations.

4.1. Unconditional expectations. As for monotone h, we first study the case of
unconditional expectations. Before giving the main result, we show the next lemma
that will be useful in subsequent proofs.

Lemma 1. Given a p-box [F , F ] and a continuous function h(x) with one maximum
at x = a, there is always a solution γ ∈ [F (a), F (a)] to the following equation

(14) h
(
F
−1

(γ)
)

= h
(
F−1(γ)

)
.

Proof. let us consider the function

ϕ (α) = h
(
F
−1

(α)
)
− h

(
F−1 (α)

)
,

which, being a substraction of two continuous functions (by supposition), is con-
tinuous. Since the function h has its maximum at point x = a, then, by taking
α = F (a), we get the inequality

ϕ (γ) = h
(
F
−1

(F (a))
)
− h (a) ≤ 0

and, by taking γ = F (a), we get the inequality

ϕ (γ) = h (a)− h
(
F−1

(
F (a)

))
≥ 0.
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Figure 3. Optimal distributions F with unimodal h

Consequently, there exists γ in the interval
(
F (a) , F (a)

)
such that ϕ (γ) = 0 (since

ϕ is continuous). �

The next proposition shows that, as for monotone h, the fact of knowing that
h has one maximum in x = a allows us to derive closed-form expressions of lower
and upper expectations. The results of the proposition are illustrated in Fig. 3.

Proposition 3. If the function h has one maximum at point a ∈ R, then the upper
and lower expectations of h(X) on [F , F ] are

(15) E(h) =

a∫
−∞

h(x)dF + h(a)
[
F (a)− F (a)

]
+

∞∫
a

h(x)dF ,

(16) E(h) =

 F
−1

(α)∫
−∞

h(x)dF +

∞∫
F−1(α)

h(x)dF

 ,
or, equivalently

E(h) =

F (a)∫
0

h(a∗
γ
)dγ + [F (a)− F (a)]h(a) +

1∫
F (a)

h(a∗γ )dγ(17)

(18) E(h) =

α∫
0

h(a∗γ)dγ +

1∫
α

h(a∗γ)dγ,

where α is the solution of equation

(19) h
(
F
−1

(α)
)

= h
(
F−1(α)

)
.

such that α ∈ [F (a), F (a)].

Proof using linear programming. We assume that the function h (x) is differ-
entiable in R and has a finite value as x → ∞. The lower and upper cumulative
probability functions F and F are also assumed to be differentiable. We also con-
sider the primal and dual problems considered in Section 2.1 and recalled below.
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Primal problem: Dual problem:

Min. v =
∞∫
−∞

h (x) ρ (x) dx Max. w = c0 +
∞∫
−∞

(
−c (t)F (t) + d (t)F (t)

)
dt

subject to subject to

ρ (x) ≥ 0,
∞∫
−∞

ρ (x) dx = 1, c0 +
∞∫
x

(−c (t) + d (t)) dt ≤ h (x) ,

−
x∫
−∞

ρ (x) dx ≥ −F (x) , c0 ∈ R, c (x) ≥ 0, d (x) ≥ 0.
x∫
−∞

ρ (x) dx ≥ F (x) .

The proof of Equations (15)-(16) and (19) can be separated in three main steps:
(1) We propose a feasible solution of the primal problem.
(2) We then consider the feasible solution of the dual problem corresponding

to the one proposed for the primal problem.
(3) We show that the two solutions coincide and, therefore, according to the

basic duality theorem of linear programming, these solutions are optimal
ones.

First, we consider the primal problem. Let a′ and a′′ be real values. The function

ρ (x) =

 dF (x) /dx, x < a′

0, a′ ≤ x ≤ a′′
dF (x) /dx, a′′ < x

is a feasible solution to the primal problem if the following conditions are respected:∫ ∞
−∞

ρ (x) dx = 1,

which, given the above solution, can be rewritten∫ a′

−∞
dF +

∫ ∞
a′′

dF = 1,

which is equivalent to the equality

(20) F (a′) = F (a′′) .

We now interest ourselves in the dual problem. Let us first consider the sole con-
straint

(21) c0 +
∫ ∞
x

(−c (t) + d (t)) dt ≤ h (x) ,

which is the equivalent of the primal constraint ρ (x) ≥ 0. We then consider the
following feasible solution to the dual problem as c0 = h (∞),

c (x) =
{
h′ (x) , x < a′

0, x ≥ a′ d (x) =
{

0, x < a′′

−h′ (x) , x ≥ a′′ .

The inequalities c (x) ≥ 0 and d (x) ≥ 0 are valid provided we have the inequalities
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a′ ≤ a ≤ a′′ (i.e. interval [a′, a′′] encompasses maximum of h). By integrating c (x)
and d (x), we get the increasing function

C (x) = −
∫ ∞
x

c (t) dt =
{
h (x)− h (a′) , x < a′

0, x ≥ a′

and the decreasing function

D (x) =
∫ ∞
x

d (t) dt =
{
h (a′′)− h (∞) , x < a′′

h (x)− h (∞) , x ≥ a′′ .

Let us rewrite condition (21) as follows:

(22) c0 + C (x) +D (x) ≤ h (x) .

If x < a′, equation (22) becomes

c0 + h (x)− h (a′) + h (a′′)− h (∞) ≤ h (x) .

And, replacing the inequality by an equality (simply taking the upper bound of the
constraint), we obtain

(23) h (a′′) = h (a′) .

If a′ < x < a′′, we have c0 + h (a′′) − h (∞) ≤ h (x) which means that for all
x ∈ (a′, a′′) we have h (a′′) (= h (a′)) ≤ h (x) (i.e. h (a′′) and a′ are the minimal
values of the function h (x) in interval x ∈ (a′, a′′).) If x ≥ a′′, then we get the
trivial equality c0 + h (x)− h (∞) = h (x). The two proposed solutions are valid iff
there exist solutions to Eq. (20) and Eq. (23), respectively for the primal and dual
problem. That such solutions exist can be seen by considering Lemma1 and taking
a′ = F

−1
(γ) and a′′ = F−1 (γ), with γ the solution of Eq. (19). We then find the

admissible values of the objective functions

vmin =
∫ a′

0

h (x) dF +
∫ ∞
a′′

h (x) dF ,

wmax = c0 +
∫ ∞

0

(
−c (t)F (t) + d (t)F (t)

)
dt.

By using integration by parts together with equations (20)-(23), we can show that
equality wmax = vmin holds, with γ the particular solution of equation (19) for
which optimum is reached, as was to be proved. �

Proof using random sets. Let us now consider equations (6)-(5). Looking first
at equation (6), we see that before γ = F (a), the supremum of h on Aγ is h(a∗γ),
since h is increasing between [∞, a]. Between γ = F (a) and γ = F (a), the supre-
mum of h on Aγ is f(a). After γ = F (a), we can make the same reasoning as for
the increasing part of h (except that it is now decreasing). Finally, this gives us
the following formula:

(24) E(h) =

F (a)∫
0

h(a∗γ)dγ +

F (a)∫
F (a)

h(a)dγ +

1∫
F (a)

h(a∗γ)dγ

which is equivalent to (17). Let us now turn to the lower expectation. Before
γ = F (a) and after γ = F (a), finding the infinimum is again not a problem (it is
respectively h(a∗γ) and h(a∗γ)). Between γ = F (a) and γ = F (a), since we know
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that h is increasing before x = a and decreasing after, infinimum is either h(a∗γ)
or h(a∗γ). This gives us equation

(25) Eh =

F (a)∫
0

h(a∗γ)dγ +

F (a)∫
F (a)

min(h(a∗γ), h(a∗γ))dγ +

1∫
F (a)

h(a∗γ)dγ

and if we use equations (20),(23) as in the first proof (reasoning used in the first
proof to show that they have a solution is general, and thus applicable here), we
know that there is a level α s.t. h(F

−1
(α)) = h(F−1(α)), and for which the above

equation simplify in equation (19). �

Figure 3 shows that the extremizing distribution corresponding to upper ex-
pectation consists in concentrating as much probability mass as possible on the
maximum, as could have been expected, while the cumulative distribution reaching
the lower expectation consists of an horizontal jump avoiding higher values. As
we shall see, finding the level α satisfying Equation (20) and at which this jump
occurs is sometimes feasible, and in this case exact lower and upper expectations
can be found. In other cases, when computing the upper expectation by numerical
methods and linear programming, results indicate that it is important to include
the value a corresponding to the maximum of h in the sampled value, as well as
values close to it when computing the upper expectation. When using the random
set approach, they show that there are no need to consider values γ inside the in-
terval [F (a), F (a)], the bounds being sufficient. For the lower expectation, results
indicate that when using linear programming, it is preferable to sample outside the
interval [F

−1
(α), F−1(α)].

However, it can happens that the exact value of α cannot be computed, but
that the integrals in Eq.(15)-(16) can still be solved. In this case, lower and upper
expectations have to be approximated, for example by scanning a more or less wide
range of possible values for α (see [28] for an example).

Example 3. We still consider the same p-box as in Example 1, but we now suppose
that the loss is modelled by the function h(x) = 60 − (x − 5)2. This loss function
can express the idea that it is preferable for the unit to fail when it begins to work
or when it has worked for a long time, rather than when it works at full capacity,
as the cost of slowing a whole production line would then be quite higher. h has one
maximum at a = 5, and we get

Eh = h(5)
[
F (5)− F (5)

]
+
∫ 5

0

h(x)dF (x) +
∫ ∞

5

h(x)dF (x)

= 60 · (exp(−0.2 · 5)− exp(−0.5 · 5)) + 31.321 + 4.268
= 52.736.

Since F
−1

(α) = −2 ln(1− α) and F−1(α) = −5 ln(1− α), then α can be found by
solving the following equality

60− (−2 ln(1− α)− 5)2 = 60− (−5 ln(1− α)− 5)2.

Hence, we have two solutions α = 1 − exp(−10/7) and α = 0. Since F
−1

(0) =
F−1(0), then the second solution has to be removed. Therefore, we get α = 1 −
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exp(−10/7) = 0.76. Hence, we obtain

Eh =
∫ −2 ln(1−0.76)

−∞
h(x)dF (x) +

∫ ∞
−5 ln(1−0.76)

h(x)dF (x)

=
∫ 2.85

−∞

(
60− (x− 5)2

)
0.5e−0.5xdx+

∫ ∞
7. 14

(
60− (x− 5)2

)
0.2e−0.2xdx

= 29.745.

Finally, we obtain the interval of expected losses [29.745, 52.736]. Using the random
set approach, we get

E(h) =

1−exp(−0.5·5)∫
0

(
60− (−5 ln(1− γ)− 5)2

)
dγ + h(5)

[
F (5)− F (5)

]

+

1∫
1−exp(−0.2·5)

(
60− (−2 ln(1− γ)− 5)2

)
dγ

= 52.736.

E(h) =

0.76∫
0

(
60− (−5 ln(1− γ)− 5)2

)
dγ +

1∫
0.76

(
60− (−2 ln(1− γ)− 5)2

)
dγ

= 29.745.

If the function h is symmetric about a, i.e., the equality h(a − x) = h(a + x)
is valid for all x ∈ R, then the value of α in (19) does not depend on h and is
determined as

a− F−1
(α) = F−1(α)− a.

Note that expressions (10),(11) can be obtained from (15),(16) by taking a→∞.

4.2. Conditional expectations. We now consider conditioning by an event B =
[b0, b1], while h is still assumed to have one maximum. The following proposition
indicates how lower and upper conditional expectations can be computed in this
case.

Proposition 4. If the function h has one maximum at point a ∈ R, then the upper
and lower conditional expectations of h(X) on [F , F ] after observing the event B
are

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1
β − α

Ψ(α, β),

E(h|B) = inf
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1
β − α

Φ(α, β),
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with

Ψ(α, β) = I(α<F−1(a))

∫ a

F−1(α)

h(x)dF + I
(β>F

−1
(a))

∫ F
−1

(β)

a

h(x)dF

+ h(a)
(
min(F (a), β)−max(F (a), α)

)
Φ(α, β) = h(b0)

(
F (b0)− α

)
+
∫ F

−1
(ε)

b0

h(x)dF

+ h(b1) (β − F (b1)) +
∫ b1

F−1(ε)

h(x)dF

Here I(a<b) is the indicator function taking 1 if a < b and 0 if a ≥ b; ε is one of
the roots of the following equation:

(26) h
(
F
−1

(ε)
)

= h
(
F−1(ε)

)
.

Proof. The proof follows from Proposition 1 where Ψ(α, β),Φ(α, β) are respectively
replaced by formulas given in Proposition 3. �

Example 4. We consider the same h as in Example 3, the same p-box [F , F ] as
in the other examples, and the conditioning event B = [1, 8]. From Example 3, the
solutions of Eq. (26) are ε = 1−exp(−10/7) = 0.76, F−1(ε) = 7.14, F

−1
(ε) = 2.85.

We also have a = 5, F (a) = 1 − exp(−0.2 · 5) = 0.63, F (a) = 1 − exp(−0.5 · 5) =
0.92. Let us first concentrate on

E(h|B) = sup
0.18≤α≤0.39
0.8≤β≤0.98

1
β − α

Ψ(α, β),

where

Ψ(α, β) = I(α<0.63)

∫ 5

−5 ln(1−α)

(
60− (x− 5)2

)
0.2e−0.2xdx

+ I(β>0.92)

∫ −2 ln(1−β)

5

(
60− (x− 5)2

)
0.5e−0.5xdx

+ 60
(
min(1− e−0.5·5, β)−max(1− e−0.2·5, α)

)
=

(
25α ln2 (1− α)− 25 ln2 (1− α)− 35α+ 31.32

)
+ 60 (min (0.92, β)− 0.63)

+ I(β>0.92)

(
4 (1− β) ln2 (1− β) + 12 (1− β) ln (1− β) + 47β − 42.73

)
since 0.18 ≤ α ≤ 0.39, we have I(α<0.63) = 1. Let us then consider the two sets of
value [0.8, 0.92] and (0.92, 0.98] for which I(β>0.92) takes different values, and the
respective functions Ψ1(α, β),Ψ2(α, β) associated to them:

Ψ1(α, β) = 25α ln2 (1− α)− 25 ln2 (1− α)− 35α+ 31.32 + 60 (β − 0.63)

Ψ2(α, β) = 25α ln2 (1− α)− 25 ln2 (1− α)− 35α+ 31.32

+ 4 (1− β) ln2 (1− β) + 12 (1− β) ln (1− β) + 47β − 42.73 + 17.4

It can be checked that the derivative dΨ1(α,β)/(β−α)/dβ is positive for 0.18 ≤ α ≤ 0.39,
hence the maximum of Ψ1(α, β)/(β − α) is achieved at β = 0.98. Also, since
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Figure 4. Optimal distribution (thick) for computing upper con-
ditional expectation on B = [1, 8]

Ψ1(α, 0.98)/(0.98− α) decreases as α increases, we have

sup
1

β − α
Ψ1(α, β) =

1
0.98− 0.18

Ψ1(0.18, 0.98) = 56.52.

A similar analysis for Ψ2(α,β)/(β−α) shows that maximum is achieved for α = 0.39,
β = 0.8. Hence

sup
1

β − α
Ψ2(α, β) =

1
0.8− 0.39

Ψ2(0.39, 0.8) = 59.57.

and, finally, we have E(h|B) = max(56.52, 59.57) = 59.57. Figure 4 gives an illus-
tration of the extremizing cumulative distribution for which this upper conditional
expectation is reached.

Let us now detail the computations for

E(h|B) = inf
0.18≤α≤0.39
0.8≤β≤0.98

1
β − α

Φ(α, β),

where

Φ(α, β) =
(
60− (1− 5)2

)
(0.39− α) +

∫ 2.85

1

(
60− (x− 5)2

)
0.5e−0.5xdx

+
(
60− (8− 5)2

)
(β − 0.8) +

∫ 8

7.14

(
60− (x− 5)2

)
0.2e−0.2xdx

= 51β − 44α− 3.54.

The function 1
β−αΦ(α, β) increases as α increases by arbitrary 0.8 ≤ β ≤ 0.98 and

increases as β increases. This implies that E(h|B) = 1/(0.8−0.18) (51 · 0.8− 44 · 0.18− 3.54) =
47.32.

Note that, in the general case, four functions Ψi (corresponding to all combina-
tions of values of I(α<F−1(a)), I(β>F−1

(a))
inside {0, 1}2) would have to be considered

in the computation of E(h|B). Example 4 well illustrates the fact that when h is
non-monotone, analytical solutions can still be found in some cases, but that they
tend to become tedious to compute. This will be confirmed in the next section.
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5. Functions with local maxima/minima

Now we consider a general form of the function h, i.e., the function h (x) has
alternate local maxima at point ai, i = 1, 2, ... and minima at point bi, i = 0, 1, 2, ...,
such that

(27) b0 < a1 < b1 . . . < bi < ai < bi+1 < . . .

Note that, in this case, studying the shape of the extremizing cumulative distribu-
tion reaching lower expectation is sufficient, thanks to the duality between lower
and upper expectation.

Proposition 5. If local maxima (ai) and minima (bi) of the function h satisfy
condition (27), then the extremizing distribution F for computing the lower uncon-
ditional expectation E(h) has discontinuities (vertical jumps) at points bi, i = 1, ....
of the size

min
(
F (bi) , αi+1

)
−max (F (bi) , αi) .

Between points bi−1 and bi, that is between discontinuities numbered i− 1 and i,
the extremizing cumulative probability distribution function F is of the form:

F (x) =

 F (x) , x < a′

α, a′ ≤ x ≤ a′′
F (x) , a′′ < x

,

where α is the root of the equation

h
(

max
(
F
−1

(α) , bi−1

))
= h

(
min

(
F−1 (α) , bi

))
in interval

[
F (ai) , F (ai)

]
, and a′,a′′ are such that

a′ = max
(
F
−1

(α) , bi−1

)
, a′′ = min

(
F−1 (α) , bi

)
.

The upper expectation E(h) can be found from the condition E(h) = −E(−h).

Proof using linear programming. This proof is based on the investigation of
the following local primal and dual optimization problems for computing the lower
expectation of h in finite interval [b0, b1) where h has one maximum at point a1:

Primal problem:
Min. v =

∫ b1
b0
h (x) f (x)dx

subject to
f (x) ≥ 0, F0 ≥ 0, F1 ≥ 0,
−
∫ x
b0
f (t) dt− F0 ≥ −F (x) ,∫ x

b0
f (t) dt+ F0 ≥ F (x) ,

−F0 ≥ −F (b0) ,F0 ≥ F (b0) ,
−F1 ≥ −F (b1) ,F1 ≥ F (b1) ,∫ b1
b0
f (t) dt+ F0 − F1 = 0.

Dual problem:
Max. w = −c0F (b0) + d0F (b0)− c1F (b1)
+d1F (b1) +

∫ b1
b0

(
−F (x) c (x) + F (x) d (x)

)
dx

subject to
e+

∫ b1
x

(−c (t) + d (t)) dt ≤h (x) ,
e− c0 + d0 +

∫ b1
b0

(−c (t) + d (t)) dt ≤0,
−e− c1 + d1 ≤ 0,
c (x) ≥ 0,c0 ≥ 0,c1 ≥ 0,
d (x) ≥ 0,d0 ≥ 0,d1 ≥ 0,e ∈ R

The optimal solutions of the above problems correspond to the extremizing dis-
tribution for values x ∈ [b0, b1). F0 := F (b0) and F1 := F (b1) respectively stand for
the values of the extremizing F in b0 and b1. The proof then follows in two main
steps:
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Figure 5. Four cases of piece-wise extremizing F

(1) Find optimal solution (that is, propose a feasible solution which coincide for
both the primal and dual problem) for the above primal and dual problems,
and consequently the values of the extremizing F between any two local
minima [bi, bi+1]

(2) Show that the combination of these piece-wise extremizing F correspond
to a cumulative distribution.

Step (1) of the proof To find optimal solution between x ∈ [b0, b1], we will
consider every possible cases. First, we can differentiate between two main cases,
depending on the inequality relation between F (b0) and F (b1).

Case 1. F (b0) > F (b1). The optimal solution in this case is of the form: it
corresponds to the solution f (x) = 0, F (x) = F0 = F1 = α, where α is an arbitrary
number satisfying the condition F (b1) < α < F (b0) for the primal problem and to
the solution c (x) = d (x) = 0, c0 = d0 = c1 = d1 = e = 0 for the dual problem. See
Fig. 5 for an illustration

Case 2. F (b0) ≤ F (b1). This case is similar to the one considered in Section 4,
since between [b0, b1), h has a maximum for x = a1 and is increasing (resp. de-
creasing) in [b0, a1] (resp. [a1, b1)). We will therefore proceed in the same way as
in the proof of Proposition 3 to find the optimal solution. First recall (Lemma 1)
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that there is a value α which is a root of the function

ϕ (α) = h
(

max
(
F
−1

(α) , b0
))
− h

(
min

(
F−1 (α) , b1

))
with α ∈

[
F (a1) , F (a1)

]
. Three subcases can now occur, depending whether α is

inside [F (b0) , F (b1)] or is higher/lower than any value in this interval. We now
give details about each of these subcases, the reasoning being similar to the one
in the proof of Proposition 3. All subcases and associated extremizing distribution
are illustrated in Fig. 5

Subcase 2.1. F (b0) ≤ α ≤ F (b1) (α ∈ [F (b0) , F (b1)]). Let us denote a′ =
F
−1

(α), a′′ = F−1 (α). Then the optimal solution is of the form:

f (x) =

 dF (x)/dx, b0 < x < a′

0, a′ 6 x 6 a′′

dF (x) /dx, a′′ < x < b1

,

F0 = F (b0) , F1 = F (b1) .
This implies that

F (x) =
∫ x

b0

f (t) dt+ F0 =

 F (x) , b0 < x < a′

α, a′ 6 x 6 a′′

F (x) , a′′ < x < b1

.

Let us now give the corresponding solution to the dual problem, and show that
they are equal. According to relations between primal/dual problem, we have that
if a′ < x < b1, then c (x) = 0, and if b0 < x < a′′, then d (x) = 0. It is obvious that
d0 = c1 = 0. Consider the constraint

e+
∫ b1

x

(−c (t) + d (t)) dt ≤ h (x)

for different intervals of x.
Let a′′ < x < b1. Then there holds

e+
∫ b1

x

d (t) dt = h (x) .

Hence d (x) = −h′ (x) and e = h (b1).
Let a′ ≤ x ≤ a′′. Then the following inequality

e+
∫ b1

a′′
d (t) dt ≤ h (x)

or h (a′′) ≤ h (x) has to be valid. Indeed, the inequality is valid due to the condition
h (a′) = h (a′′).

Let b0 < x < a′. Then

e−
∫ a′

x

c (t) dt+
∫ b1

a′′
d (t) dt = h (x)

or

−
∫ a′

x

c (t) dt+ h (a′′) = h (x) .

Hence c (x) = h′ (x). The equality

e− c0 + d0 +
∫ b1

b0

(−c (t) + d (t)) dt = 0
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shows that
h (b1)− c0 − h (a′) + h (b0)− h (b1) + h (a′′) = 0

and c0 = h (b0). It follows from the equality −e − c1 + d1 = 0 that there holds
d1 = e = h (b1). In sum, we have

c (x) =
{
h′ (x) , b0 < x < a′

0, a′ 6 x 6 b1
,

d (x) =
{

0, b0 < x < a′′

−h′ (x) , a′′ 6 x 6 b1
,

c0 = h (b0) , d0 = c1 = 0, d1 = e = h (b1) .
Let us now show that the two obtained solution coincide:

zmin =
∫ a′

b0

h (x) dF (x) +
∫ b1

a′′
h (x) dF (x)

wmax = −F (b0)h (b0) + F (b1)h (b1)−
∫ a′

b0

F (x)h′ (x)dx−
∫ b1

a′′
F (x)h′ (x)dx

or

wmax = −F (b0)h (b0) + F (b1)h (b1)

+
∫ a′

b0

h (x)dF (x)− F (a′)h (a′) + F (b0)h (b0)

+
∫ b1

a′′
h (x) dF (x)− F (b1)h (b1) + F (a′′)h (a′′)

= zmin.

Hence the proposed solution is the optimal one.
Subcase 2.2. α > F (b1) ([F (b0) , F (b1)] ≤ α). Denote a′ = F

−1
(α). Then

the optimal solution to the initial problem is:

f (x) =
{

dF (x) /dx, b0 < x < a′

0, a′ 6 x 6 b1
, F0 = F (b0) , F1 = α,

F (x) =
∫ x

b0

f (t) dt+ F0 =
{
F (x) , b0 < x < a′

α, a′ 6 x 6 b1
.

The corresponding solution for the dual problem is such that if a′ < x < b1, then
c (x) = 0, and if b0 < x < b1, then d (x) = 0, hence we have d0 = c1 = 0. Again,
consider the constraint

e+
∫ b1

x

(−c (t) + d (t)) dt ≤ h (x)

for different intervals. Let a′ < x < b1. Then the condition e ≤ h (x) must be valid.
Let b0 < x < a′. Then there holds

e−
∫ a′

x

c (t) dt = h (x) .

Consequently, there hold the equalities c (x) = h′ (x) and e = h (a′). Hence the
inequality e = h (a′) ≤ h (x) is valid for the interval a′ < x < b1. The equality

e− c0 + d0 +
∫ b1

b0

(−c (t) + d (t)) dt = 0
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shows that h (a′) − c0 − h (a′) + h (b0) = 0, and, therefore, c0 = h (b0). It follows
from the equality −e− c1 + d1 = 0 that there holds d1 = e = h (a′). In sum, we get

c (x) =
{
h′ (x) , b0 < x < a′

0, a′ 6 x 6 b1
,

d (x) = 0, c0 = h (b0) , d0 = c1 = 0, d1 = e = h (a′) .

The obtained solutions for the primal and dual problems are such that:

zmin =
∫ a′

b0

h (x) dF (x) ,

wmax = −F (b0)h (b0) + F (a′)h (a′)−
∫ a′

b0

F (x)h′ (x)dx

or

wmax = −F (b0)h (b0) + F (a′)h (a′)

+
∫ a′

b0

h (x)dF (x)− F (a′)h (a′) + F (b0)h (b0)

= zmin.

Consequently, this is the optimal solution.
Subcase 2.3. α < F (b0) (α ≤ [F (b0) , F (b1)]). Denote a′′ = F−1

(
F (b0)

)
.

Then the optimal solution to the primal problem is

f (x) =
{

0, b0 6 x 6 a′′

dF (x) /dx, a′′ < x < b1
, F0 = α, F1 = F (b1) .

F (x) =
{

α, b0 6 x 6 a′′

F (x) , a′′ < x < b1
.

and the proof is similar to the one of above cases. Optimal shape of F for any
interval [bi, bi+1] can be obtained by replacing b0 and b1 by respectively bi and
bi+1 in the above proofs, as they are general (as pictured on Fig. 5). All is left to
prove is that the concatenated F obtained by the piece-wise extremizing solutions
is increasing (i.e., that Fi for [bi−1, bi] is lower or equal than Fi for [bi, bi+1]).

Step (2) of the proof Now we show that the joint extremizing distribution
function is increasing. Without loss of generality we consider only two intervals
[b0, b1] and [b1, b2]. The maximal value of the function F (x) in the interval [b0, b1]
is max

(
F (b0) , F (b1)

)
for all the cases. The minimal value of the function F (x) in

the interval [b1, b2] is min
(
F (b1) , F (b2)

)
for all the cases.

If F (b2) ≥ F (b0), then

min
(
F (b1) , F (b2)

)
≥ max

(
F (b0) , F (b1)

)
.

This means that the function is increasing.
If F (b2) < F (b0), then F (b1) < F (b0) and we can take F (x) = F (b1) for the

left interval. On the other hand, F (b2) < F (b1) and we can take F (x) = F (b1)
for the left interval. It follows from the condition F (b1) < F (b1) that the function
F (x) is increasing in two neighbour intervals.

Figure 6 gives an example of a general extremizing distribution. �
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Proof using random sets. For convenience, we will consider that h begins with
a local minimum and ends with a local maximum an. Formulas when h begins
(resp. ends) with a local maximum (resp. minimum) are similar. Lower/upper
expectations can be computed as follows:

E(h) =

F (bn)∫
0

min
bi∈Aγ

(h(a∗γ), h(bi), h(a∗γ))dγ +

1∫
F (bn)

h(a∗γ)dγ,

E(h) =

F (a1)∫
0

h(a∗γ)dγ +

F (an)∫
F (a1)

max
ai∈Aγ

(h(a∗γ), h(ai), h(a∗γ))dγ.

We concentrate on the formula giving the lower expectation (details for upper one
are similar). The most interesting part is the first integral. We consider a particular
level γ. Let B = {bi, . . . , bj} (i ≤ j) be the set of local minima included in the set
Aγ (B can be empty). bi−1 and bj+1 are the closest local minima outside Aγ . We
then consider the minimal ∆γ := γ+ δγ such that minbi∈Aγ (h(a∗γ), h(bi), h(a∗γ)) 6=
minbi∈A∆γ (h(a∗,∆γ), h(bi), h(a∗∆γ)) with minx∈A∆γ h(x) 6= h(a∗,∆γ) if minx∈Aγ h(x) =
h(a∗,γ) and minx∈A∆γ h(x) 6= h(a∗∆γ) if minx∈Aγ h(x) = h(a∗γ). As in LP proof, four
different cases can occur:

Case A: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a∗γ)) = h(bk)

and
min

bi∈A∆γ
(h(a∗,∆γ), h(bi), h(a∗∆γ)) = h(bk′),

with k 6= k′ and where h(bk) and h(bk′) are respectively the lowest local minima
of h(x) for x ∈ Aγ and x ∈ A∆γ . That is, probability mass is concentrated on bk
from γ to ∆γ, and concentrates on bk′ for values γ′ ≥ ∆γ. This correspond to Case
1. of Fig. 5 and of the previous proof. In Fig. 6, it corresponds to the extremizing
distribution between b2 and b3.

Case B: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a∗γ)) = h(a∗γ)

and
min

bi∈A∆γ
(h(a∗,∆γ), h(bi), h(a∗∆γ)) = h(a∗∆γ).

This can happen when any local minimum inside Aγ ,A∆γ is higher than local
minima just outside it. In this case, it can happen that minimal values stand at
the bounds of intervals Aγ′ for any γ ≤ γ′ ≤ ∆γ. This corresponds to Case 2.1.
of Fig. 5 and of the previous proof. In Fig. 6, it corresponds to the extremizing
distribution between b4 and b5.

Case C: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a∗γ)) = h(bk)

and
min

bi∈A∆γ
(h(a∗,∆γ), h(bi), h(a∗∆γ)) = h(a∗∆γ).
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Figure 6. Example of Optimal F with general h

With h(bk) the lowest local minima for bk ∈ Aγ . The minimum shift from the left
bound of Aγ (coinciding with F ) to bk. This corresponds to Case 2.2. of Fig. 5
and of the previous proof. In Fig. 6, it corresponds to the extremizing distribution
between b1 and b2.

Case D: we have

min
bi∈Aγ

(h(a∗γ), h(bi), h(a∗γ)) = ha∗γ)

and
min

bi∈A∆γ
(h(a∗,∆γ), h(bi), h(a∗∆γ)) = h(bk′).

With h(bk′) the lowest local minima for bk′ ∈ A∆γ . Situation is similar to the
previous case, and corresponds to Case 2.3. of Fig. 5 and of the previous proof. In
Fig. 6, it corresponds to the extremizing distribution between b3 and b4.

When minbi∈Aγ (h(a∗γ), h(bi), h(a∗γ)) = minbi∈A∆γ (h(a∗γ), h(bi), h(a∗γ)) = h(bk)
with bk ∈ Aγ∩A∆γ , probability mass stay concentrated on bk, and this corresponds
to a discontinuity mentioned in Proposition 5. By letting γ evolve from 0 to 1, we
get the extremizing cumulative distribution of Proposition 5. �

Looking at the extremizing distribution F pictured in Figure 6, we can see that
computing the lower expectation consists in concentrating probability masses over
local minima, while giving the less possible amount of probability mass to higher
values of h(x), as in the case of a function having one maximum. Thus, our results
confirm what could have intuitively be guessed at first sight. They also give an-
alytical and computational tools to compute lower and upper expectations. They
are illustrated in the next example.

Example 5. We consider the same p-box [F , F ] as in the previous examples (see
Example 1). However, we assume that the loss function is of the type h(x) =
(0.6x) cos(x). It could, for instance, model the return of a game based on the move-
ment of a pendulum. It could also model the loss incurred by a unit failure whose
functioning alternate between low and full capacity (failure during low capacity peri-
ods costing less). As a loss after failure has to be positive, one can consider h(x)+µ,
with µ a positive constant2. h(x) is oscillating between local maxima and minima.

2This does not change further calculations, as E(h+ µ) = E(h) + µ.
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These extrema are solutions of cos(x) = x sin(x):

a1 = 0.860, b1 = 3.426, a2 = 6.437, b2 = 9.529, a3 = 12.645,

b3 = 15.771, a4 = 18.902, b4 = 22.036, a5 = 25.172, b5 = 28.31.

We will compute the extremizing distribution for each intervals [bi, bi+1) for i =
1, . . . , 5, with b0 = 0. Let us analyze the first interval [0, b1). The value α ∈ (0, 1)
in this interval can be found as a root of the equation

(max (−2 ln(1− α), 0)) · cos(max (−2 ln(1− α), 0))

= (min (−5 ln(1− α), 3.426)) · cos(min (−5 ln(1− α), 3.426)).

However, many different values of α ∈ (0, 1) are solutions to the above equations.
Relying on the proof of Proposition 5 and on the various subcases exposed therein
(see Fig. 5), we should, for a given interval [bi, bi+1), take only root(s) which pro-
vides the interval [a′, a′′] such that ai ∈ [a′, a′′]. For [0, b1), this corresponds to
α = 0.215, for which values a′, a′′ are

a′ = max (−2 ln(1− α), bi−1) = max (−2 ln(1− 0.215), 0) = 0.483,

a′′ = min (−5 ln(1− α), bi) = min (−5 ln(1− 0.215), 3.426) = 1.209.

It can be seen from the above that a1 = 0.860 ∈ [0.483, 1.209]. We can now deter-
mine the extremizing distribution function in [0, b1), which is as follows:

F (x) =

 1− exp(−0.5 · x), x < 0.483
0.215, 0.483 ≤ x ≤ 1.209
1− exp(−0.2 · x), 1.209 < x < 3.426

.

This corresponds to the case 2.1. of Figure 5. the "jump" (i.e., probability mass)
at point b1 is of the size

min (1− exp(−0.5 · 3.426), 0.808)−max (1− exp(−0.2 · 3.426), 0.215) = 0.312.

Since F (3.426) − F (3.426) = 0.33 > 0.312, this means that the extremizing distri-
bution in [b1, b2) starts with a constant value F (b1) = F (3.426) + 0.312 = 0.808
and with an horizontal line. Moreover, we can check that 0.808 is the right starting
point since it is a root of the equation

max (−2 ln(1− α), 3.426) · cos(max (−2 ln(1− α), 3.426)

= min (−5 ln(1− α), 9.529) · cos(min (−5 ln(1− α), 9.529) .

And we have a′ = 3.426 and a′′ = 8.263 for α = 0.808. By taking into account the
analysis of the first interval, we can write

F (x) =
{

0.808, 3.426 ≤ x ≤ 8.263
1− exp(−0.2 · x), 8.263 < x < 9.529 .

This correspond to case 2.3. of Figure 5. the jump at b2 has value 9.77 × 10−2,
and we have again F (9.529) − F (9.529) = 0.14 > 9.77 × 10−2. Analysis for other
intervals are similar (they all belong to case 2.3.). For the third interval [b2, b3),
α = 0.948, a′ = 9.529, a′′ = 14.831 and we have

F (x) =
{

0.949, 9. 529 ≤ x ≤ 14. 831
1− exp(−0.2 · x), 14. 831 < x < 15.771 .
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The jump at b3 is of value 2.867× 10−2, and for [b3, b4), we have α = 0.986, a′ =
15.771, a′′ = 21.255 and

F (x) =
{

0.986, 15.771 ≤ x ≤ 21.255
1− exp(−0.2 · x), 21.255 < x < 22.036 .

The jump at b4 is of value 8.189 × 10−3, and for [b4, b5), we have α = 0.996,
a′ = 22.036, a′′ = 27.62 and

F (x) =
{

0.996, 22.036 ≤ x ≤ 27.62
1− exp(−0.2 · x), 27.62 < x < 28.31 .

The jump at point b5 is of the size 3.076× 10−3.
Note that jump sizes decrease as index i increase. This is not true in general,

and is here due to the particular shape of h(x). By computing the extremizing dis-
tribution for every interval [bi−1, bi), we can reach the lower expectation. That is, if
we note Ei(h) the lower expectation of h computed with the extremizing distribution
obtained for i intervals [bj−1, bj), j = 1, . . . , i, and if h have a finite number of local
maxima and minima, say r, then E(h) = Er(h). However, in this example, r =∞
and E(h) = limr→∞ Er(h). Therefore, only an approximate solution can be found3.
We can therefore let r increase until

∣∣Er(h)− Er−1(h)
∣∣ ≤ ε, with ε > 0 a prescribed

precision. For instance, we have

E1(h) =
∫ 0.483

0

0.6x cos(x) · 0.5e−0.5xdx

+
∫ 3.426

1.209

0.6x cos(x) · 0.2e−0.2xdx

+ 0.6 · 3.426 cos(3.426) · 0.312
= −0.82.

Pursuing the computations, we have

E2(h) = −1.558, E3(h) = −1.9, E4(h) = −2.033, E5(h) = −2.093.

If we take ε = 0.1, then |E5(h)− E4(h)| = 0.06 < 0.1, and we consider E5(h) =
−2.093 as a sufficient approximation of the true (but unknown) lower approxima-
tion. Upper expectation of h can be obtained by considering the function −h(x) and
by computing E(−h). Hence E(h) = −E(−h) = 1.94 (approximation with ε = 0.1).

This example is useful in two respects: first, it illustrates why it is useful to have
results concerning the piece-wise extremizing distribution; second, it shows that
even when analytical calculations are possible, it is not always possible to compute
an exact value, hence the interest of the generic methods proposed in Section 2.
This is particularly true when h has an infinity of local extrema and when F , F
have infinite support. It also addresses the question of the choice of levels α when
many solutions are possible.

Coming back to numerical approximations using linear programming, our results
indicates that some regions should be sampled in priority. For example, when com-
puting lower expectations, one should primarily consider values bi (local minima)
and sample in neighbourhoods of these values, as it is where probability masses are
concentrated. The converse (sampling around local maxima) holds when computing
upper expectations.

3We assume here that the expectation E(h) exists.



EXPECTATIONS AND P-BOXES 29

If we now consider random set, we can formulate the problem of computing lower
expectations as follows: let m be the number of local minima, and let γj∗ , γj∗ be
the two values bounding the probability mass concentrated on local minima bj , for
j = 1, . . . ,m (for example, for the local minima b2 in Figure 6, we would have
γ2∗ = α1, γ2∗ = α2), then

(28) E(h) =
m∑
j=1

(

γj∗∫
γ(j−1)∗

min(h(a∗γ), h(a∗γ))dγ + (γ(j)∗ − γj∗)h(bj)).

This comes down to sum all the probability masses concentrated on local minima,
and to calculate integrals when the extremizing distribution coincide either with F
or F . Note that, as in Example 5, m could be equal to∞. This formulation clearly
shows that, when using numerical methods with the random set approach, there is
no need to discretize in finer intervals the intervals [γj∗ , γ(j)∗ ], as it won’t improve
the precision of the result.

The case of conditional expectation with general function will not be treated
here, as it would require long development that wouldn’t bring many new ideas.

6. Conclusions

We have considered the problem of computing lower and upper expectations on
p-boxes and particular functions under two different approaches: by using linear
programming and by using the fact that p-boxes are special cases of random sets.
Although the two approaches try to solve equivalent problems, their differences
suggest different ways to approximate the solutions of those problems. As we have
seen, knowing the behaviour of the function over which lower and upper expecta-
tions are to be estimated can greatly increase the computational efficiency (and
even permit analytical computation).

However, more important than their differences is the complementarity of both
approaches. Indeed, one approach can shed light on some problems obscured by the
other approach (e.g., the level α of proposition 3). Another advantage of combining
both approaches is the ease with which some problems are solved and the elegant
formulation resulting from this combination (e.g., the conditional case). Let us
nevertheless note that the constraint programming approach can be applied to
imprecise probabilities in general, while the random set approach is indeed limited
to random sets.

In this paper, we have concentrated on the case where uncertainty bears on one
variable. The case where multiple variables are tainted with uncertainty described
by p-boxes will be studied in a forthcoming paper. Concerning future work related
to this topic, three lines of research seem interesting to us:

• study of other simple representations : it is desirable to achieve similar
studies for other simple uncertainty representations involving sets of proba-
bilities. This includes probability intervals [6], possibility distributions [10],
clouds [20].

• Discretization schemes : when exact solutions cannot be computed, what is
the best choice of points x1, . . . , xN or of levels γ1, . . . , γM , respectively to
approximate the solution by using LP or RS (already mentioned by other
authors [23]). We have mentioned how our results can possibly help in this
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task, but proposing generic algorithms and empirically testing them largely
remains to be done.

• Convex mixture of functions : in some applications, one can choose a strat-
egy that is a convex mixture between a finite set of options having utility
h1, . . . , hN . For such cases, one often has to find the weights λ1, . . . , λN
such that

∑
i=1,N λihi have the maximal lower expectation. It would be

interesting to study whether similar results as the ones exposed in this paper
also exists for this problem when using simple uncertainty representations
(e.g., p-boxes).

We would like to end this paper with two final remarks:
• it is clear from our results that extreme distributions over which the upper

and lower expectations will be reached will be, in general, discontinuous.
Since any discontinuous functions can be approximated as close as one
wants by continuous ones, we do not see it as a big flaw. However, in
some cases, it could be desirable to add constraints about which cumulative
distributions inside [F , F ] are admissible. This kind of questions is adressed,
for example, by Kozine and Krymsky [15].

• We mention at the beginning of the paper that our study is restricted to the
case where either cumulative distributions were assumed to be σ-additive
or where h was continuous. Again, this is not a big limitation when dealing
with practical applications, and this avoids many mathematical subtleties
arising with the consideration of finitely additive probabilities [19].
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