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Abstract

The need to propagate uncertainties
through a model is present in many appli-
cations. In most cases, the nature of this
model is either graphical or functional. In
this paper, we interest ourselves to the lat-
ter case. We consider here that uncertainty
on each model input is described either
by generalized p-boxes or possibility
distributions, two special cases of random
sets that can be interpreted in term of
confidence bounds over nested sets. We
then study their practical propagation for
different cases.

Keywords: uncertainty propagation, gen-
eralized p-boxes, random sets, possibility
distributions.

1 Introduction

The propagation of uncertainty modeled by classical
probabilities is an old research topic that still faces a
lot of challenges, but past years have also witnessed
a growing interest for the problem of propagating un-
certainty modeled by means of other theories explic-
itly coping with imprecision. The main reasons of
this interest is that imprecision is a feature of the
information that classical probabilities cannot ade-
quately account for, and that the problem of prop-
agating uncertainty is at the core of many practi-
cal applications. Nevertheless, explicitly modeling
imprecision in an uncertainty model often increases
the complexity of the propagation, since propagat-
ing imprecision is usually done by propagating sets

rather than points (which is usually done with classi-
cal probabilities).

Consequently, there is a great need of efficient meth-
ods to propagate uncertainty through some models.
These models can be either graphical (e.g. exten-
sions of bayesian networks [2]) or functionals (e.g.
models of physical phenomena [1]).

Figure 1 gives a synopsis of the general problem
of propagating uncertainty models through a func-
tion. Given the choice of a theoretical framework,
some information on the inputs and on their mutual
(in)dependencies, there is mainly three ways of in-
creasing the efficiency of the propagation1:

• uncertainty models: as a general rule, more ex-
pressive approaches allow to model more com-
plex information, but also implies more compu-
tational effort when propagating. By using less
expressive models, one can intentionally choose
to give away some information in order to gain
some efficiency,

• propagation mechanisms: another way of in-
creasing the propagation efficiency is to design
more efficient algorithms, possibly using some
knowledge we have on the model,

• approximate propagations: as exact propagation
can be difficult to achieve in general, one can
use alternative propagation methods that will
give results approximating the exact propaga-
tion. In this last case, it is important to know
what is the relationship (guaranteed outer/inner

1We consider here that the model is fixed. Otherwise, another
solution is to simplify the model
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Figure 1: Propagating Uncertainty through function:
synopsis

approximation, neither) between this approxi-
mated result and the exact result.

In this paper, we focus on the first and third points,
and take random set theory as our basic theoreti-
cal framework. The uncertainty models we consider
here are so-called generalized p-boxes and/or possi-
bility distributions, that have appealing properties but
have limited expressiveness, as they are special cases
of random sets. We then use the particularities of
generalized p-boxes and/or possibility distributions
to propose practical propagation techniques for vari-
ous situations.

Section 2 recalls the basics needed in the rest of
the paper. Section 3 then concentrates on the case
where uncertainty concerns only one input (univari-
ate case). Finally, section 4 deals with the case of
uncertainty bearing on multiple inputs (multivariate
case) which can be considered as independent (in the
sense of the so-called random set independence).

2 Preliminaries

We consider in this paper that each input spaceXi

is a finite space made ofni elementsxi (i.e. upper
indexes denote dimension index).

2.1 Random sets

Formally, a random set [4] is a mapping from a
probability space to the power set of another space.
In the discrete case [11], a random set can also be
termed as a mass distributionm : ℘(X) → [0,1] s.t.
∑E∈℘(X) m(E) = 1. In this case, subsetsE having a
strictly positive mass are called focal elements. From
a random set, we can define two uncertainty mea-
sures, respectively the belief and plausibility func-
tions, which reads, for allA⊂ X:

Bel(A) = P(A) = ∑
E,E⊆A

m(E)

Pl(A) = P(A) = ∑
E,E∩A6= /0

m(E)

The belief function quantifies our credibility in event
A, by summing all the masses thatsurely support
A, while the plausibility function measures the maxi-
mal confidence that can be given to eventA, by sum-
ming all masses thatcould supportA. They are dual
measures, in the sense that for all eventsA, we have
Bel(A) = 1−Pl(Ac).

In the sequel, random sets will be denoted(m,F ),
with m the mass distribution andF the set of focal
elements.

2.2 Possibility distributions

A possibility distribution [6] is a mappingπ : X →
[0,1] from a (here finite) spaceX to the unit inter-
val such thatπ(x) = 1 for at least one elementx in
X. Formally, a possibility distribution is equivalent
to the membership function of a fuzzy set. From
this possibility distribution, we can define two un-
certainty measures, respectively the belief and plau-
sibility functions, which reads, for allA⊂ X:

Π(A) = sup
x∈A

π(x)

N(A) = 1−Π(Ac)

Given a possibility distribution π and a de-
gree α ∈ [0,1], the strong and regularα-
cuts are subsets respectively defined as the sets



Aα = {x∈ X|π(x) > α} and Aα = {x ∈ X|π(x) ≥
α}. Theseα-cuts are nested, since ifα > β , then
Aα ⊂ Aβ . In the finite case, a possibility distribution
takes at most|X| values. Let us noteα0 = 0 < α1 <
.. . < αn = 1 thesen values.

Possibility distributions can also be interpreted as
particular random sets. Namely, they are equivalent
to random sets whose focal elements are nested: a
belief function (resp. a plausibility function) is a ne-
cessity measure (resp a possibility measure) if and
only if it derives from a mass function with nested
focal sets. Given a possibility distributionπ, the cor-
responding random set will have the following focal
elementsEi with massesm(Ei), i = 1, . . . ,n:

{

Ei = {x∈ X|π(x) ≥ αi} = Aαi

m(Ei) = αi −αi−1
(1)

and this random set is called consonant by
Shafer [11].

As practical models, possibility distributions can be
naturally interpreted as nested sets of confidence in-
tervals (i.e. cuts of levelα has confidence 1−α),
and are thus easy to assess. Moreover, their simplic-
ity makes them easy to use. The weak side of possi-
bility distributions is that their expressivity is limited
(i.e. for an eventA, bounds[N(A),Π(A)] are either
of the kind [0,α ] or [β ,1])), thus they can be found
insufficient models if available information is more
complex.

2.3 Generalized p-boxes

A Generalized p-box is defined as follows:

Definition 1. A generalized p-box[F,F ] over a finite
spaceX is a pair of comonotonic mappingsF,F , F :
X → [0,1] andF : X → [0,1] from X to [0,1] such
that F is point-wise lower thanF (i.e. F ≤ F) and
there is at least one elementx in X for which F(x) =
F(x) = 1.

Given a generalized p-box[F,F ], we can always de-
fine a complete pre-ordering≤[F,F ] on elementsx
of X that is such thatx ≤[F,F ] y if F(x) ≤ F(y) and

F(x) ≤ F(y). The name generalized p-box comes
from the fact that ifX is the real line and the order
is the natural order of numbers, we retrieve the usual
notion of p-boxes [9].

To shorten notations, we will consider in the sequel

that given a general p-box[F,F ] on X, elementsx of
X are indexed by natural integers in a way such that
xi ≤[F,F] x j if and only if i ≤ j. Let us now denote for
all i = 1, . . . ,n by Ai the sets{x j ∈ X|x j ≤ xi}.

Uncertainty modeled by generalized p-boxes can
also be mapped into a set of constraints that are up-
per and lower confidence bounds on the uncertainty
of Ai, namely, fori = 1, . . . ,n:

αi ≤ P(Ai) ≤ βi (2)

whereαi = F(xi), βi = F(xi), P(Ai) is the (unknown)
probability of eventAi and withA0 = /0, α0 = β0 = 0.
We also have, for alli from 0 ton−1, αi ≤ αi+1,βi ≤
βi+1 andAi ⊆ Ai+1.

It can also be shown [5] that the uncertainty mod-
eled by any generalized p-box can be mapped into a
particular random set. This random set can be built
by the following procedure: consider a threshold
θ ∈ [0,1]. Whenαi+1 > θ ≥ αi andβ j+1 > θ ≥ β j ,
then, the corresponding focal set isAi+1 \A j , with
weight

m(Ai+1\A j) = min(αi+1,β j+1)−max(αi ,β j). (3)

Generalized p-boxes can also be linked to possibil-
ity distributions in the following way [5]: the un-
certainty modeled by a generalized p-box[F,F ] is
equivalent to the uncertainty modeled by a pair of
possibility distributionsπF ,πF that are such that, for
i = 1, . . . ,n,

πF(xi) = βi

and

πF(xi) = 1−max{α j | j = 0, . . . , i α j < αi}.

and the random setsmπF
andmπF modeling the un-

certainty of these distributions are such that, fori =
0, . . . ,n−1,

mπF
(Ac

i ) = βi −βi−1 andmπF (Ai+1) = αi+1−αi

Thus, we have three different ways of characterizing
a generalized p-box: by a set of lower/upper bounds
on nested sets, by an equivalent random set or by a
pair of possibility distributions. Each of these views
suggest different propagation techniques, that will be
explored in the next section.



From a practical point of view, there is various rea-
sons to give attention to generalized p-boxes and to
their propagation: similarly to possibility distribu-
tions, they can be interpreted in terms of confidence
bounds given to nested subsets, making them easy to
assess and explain; they have more expressive power
than possibility distributions, since lower and upper
confidence bounds on an eventA can now be of the
kind [α ,β ], and since they remain special cases of
random sets, we can try to use their specific prop-
erties to derive propagation methods more efficient
than those used for general random sets.

2.4 Propagation of random sets

Let f be a function from the Cartesian product
×p

i=1Xi of input spacesXi to the output spaceY.

If we then consider a joint random set(m,F )1,...,p

with n focal elementsE j ⊂ ×p
i=1Xi and weights

m(E j), then, the propagated random set is such that,
for j = 1, . . . ,n:

Ey
j = f (E j) = { f (x) ∈Y|x ∈ E j}

m(Ey
j ) = m(E j)

wherex denote a vector of×p
i=1Xi. The propagation

of the joint random set thus consist of mapping ev-
ery focal elementE j into f (E j). Depending on our
knowledge off , this operations can be more or less
complex. For instance, if setsE j are Cartesian prod-
ucts of closed intervals defined on the real line, com-
puting f (E j) is usually easy whenf is isotone, but
can become very greedy in computational efforts if
the behavior off is complex and/or badly known.

In the case where the information is given in terms
of p marginal random sets(m,F )i on each spaceXi,
a first step before propagating the information is to
build the joint random set(m,F )1,...,p. We will deal
with this step in section 4, since we don’t need it in
the univariate case.

3 Univariate case

In this section, we consider that we’re propagating
uncertainty bearing on variablex (which takes values
onX) through a functionf (x) = y wherey is the out-
put variable. Note thatf can depend on other param-
eters and be a complex functional, but we consider
that only the value ofx is imperfectly known.

We thus consider that our uncertainty onx is mod-
eled by a generalized p-box[F ,F] that we have to
propagate.

There is (at least) three ways of doing this prop-
agation: by propagating the nested sets and their
lower/upper confidence bounds, by propagating the
random set equivalent to this generalized p-box, and
by propagating independently the two possibility dis-
tributions. After each of this propagation, we can
build a corresponding random set, and then compare
these random sets between them.

The first solution, propagating the nested sets and
their confidence bounds consists of computing for
each setAi the propagated setsf (Ai), and to consider
the generalized p-box induced by the constraints:

∀i = 1, . . . ,n, αi ≤ P( f (Ai)) ≤ βi (4)

whereαi ,βi are the confidence bounds originally re-
lated to the setAi. Given this propagated generalized
p-box (it is still a generalized p-box, since setsf (Ai)
are also nested), we can build the counterpart of the
random set given by equation (3), which is here:

θ ∈ [0,1]
αi+1 > θ ≥ αi

β j+1 > θ ≥ β j







m( f (Ai+1)\ f (A j)) =
min(αi+1,β j+1)−max(αi ,β j)

that we note(m,F ) f ([F ,F ])

The second solution, directly propagating the focal
elements of the random set given by equation (3),
gives the following random set:

θ ∈ [0,1]
αi+1 > θ ≥ αi

β j+1 > θ ≥ β j







m( f (Ai+1\A j)) =
min(αi+1,β j+1)−max(αi ,β j)

that is potentially different from the one given by the
first propagation. We note this second random set
(m,F ) f ((m,F )).

The third solution consists of propagating both pos-
sibility distributions by the so-called extension prin-
ciple. This is equivalent to propagate the respec-
tive focal elements of each distribution through
f , which gives us the random sets(m,F ) f (πF )

and (m,F ) f (πF ) which respectively have, fori =
0, . . . ,n−1, the masses

m( f (Ac
i )) = βi −βi−1 andm( f (Ai+1)) = αi+1−αi



and, if we take from these two random sets the coun-
terpart of the random set given by equation (3), we
end up with the following random set:

θ ∈ [0,1]
αi+1 > θ ≥ αi

β j+1 > θ ≥ β j







m( f (Ai+1)\ f (Ac
j)

c) =

min(αi+1,β j+1)−max(αi ,β j)

that we note(m,F ) f (πF ,πF ).

We can already note that the three random sets
(m,F ) f ([F ,F]), (m,F ) f ((m,F )), (m,F ) f (πF ,πF ) have
the same mass function distributed over different fo-
cal elements. To compare the results of the three
propagations, we thus have to compare the informa-
tive content of their respective focal elements. The
following proposition can be used to do such a com-
parison:

Proposition 1. Let A and B be two subsets of a space
X such that A⊂ B, and let f be a function from X to
another space Y. Then, we have the following inclu-
sion relations:

f (B)\ f (A) ⊆ f (B\A) ⊆ f (B)\ f (Ac)c

and inclusion relationships become equalities if f is
injective

Proof. We will first prove the first inclusion relation-
ship, then the second one, each time showing that we
have equality iff is injective.

Let us first prove that any element off (B)\ f (A) is in
f (B\A). Let us consider an elementy in f (B)\ f (A).
This implies:

y∈ f (B)
y 6∈ f (A)

}

⇒∃x∈ X

{

f (x) ∈ f (B)
f (x) 6∈ f (A)

and thisx is in B and not inA (i.e. in B\A), which
implies thaty = f (x) is in f (B\A). This means that
f (B) \ f (A) ⊆ f (B\A), and we still have to show
that this inclusion can be strict. To see it, consider
the case where one of the elementx in B\A is such
that f (x) takes the same value asf (x′), wherex′ is
in A, thus this particularf (x) is in f (B\A) and not
in f (B) \ f (A) (since by assumption it is inf (A)),
showing that the inclusion can be strict. This case
does not happen iff is injective (since iff is injective
f (x) = f (x′) if and only if x = x′).

To prove the second inclusion relation, first note that
f (B \ A) = f (B∩ Ac) and that ( f (B) \ f (Ac)c) =

( f (B) ∩ f (Ac)). Known results immediately give
f (B∩Ac) ⊆ f (B)∩ f (Ac). Strict inclusion happens
in the case where we have an elementx of X in B and
in A, and another elementx′ not inA and not inB (i.e.
x′ is in Ac) for which f (x) = f (x′), thus we have that
x andx′ are not inB∩Ac, but are respectively inB
andAc, and thusf (x) is in f (B)∩ f (Ac). Again, this
case cannot happen whenf is injective (since in this
case,x 6= x′ implies f (x) 6= f (x′)).

What does proposition 1 tells us is that, whenf is not
injective, we have in general

(m,F ) f ([F ,F]) ⊆ (m,F ) f ((m,F )) ⊆ (m,F ) f (πF ,πF )

thus showing that(m,F ) f ([F ,F]) is more optimistic
than(m,F ) f ((m,F )), which is itself more optimistic
than(m,F ) f (πF ,πF ). And in the case wheref is in-
jective, all these propagations are equivalent.

The question is then, iff is not injective, why should
we choose one propagation rather than the other?

From a computational complexity standpoint,
(m,F ) f ([F ,F ]) seems more convenient than
(m,F ) f (πF ,πF ), which in turn seems more con-
venient than(m,F ) f ((m,F )). The main reason is
that, to compute(m,F ) f ([F ,F ]) and (m,F ) f (πF ,πF ),
we have to compute mappings of focal elements
that are collections of nested sets (one collection
in the first case, two in the second), allowing us
to use this nestedness to cut down the number of
required computations, while focal elements of
(m,F ) f ((m,F )) are not nested. To illustrate this,
let us consider thatf is a complex non-monotonic
mapping fromR to R, whereR is the real line. Given
the setsA0 ⊂ A1 ⊆ . . . ⊆ An, let us consider that the
global minimum and maximum off are respectively
in Ai \ Ai−1, and in A j \ A j−1, and that we know
their values. This means that in the propagation,
we no longer have to compute the lower bounds of
all f (Ak), f (Ac

l ) such thatk > i > l nor the upper
bounds of allf (Ak′), f (Ac

l ′) such thatk′ > j > l ′.

Also, the maximal number of sets that have to be
propagated for computing(m,F ) f ((m,F )) is (n +
1)n/2, while it is 2n for (m,F ) f (πF ,πF ) and onlyn
for (m,F ) f ([F ,F]).

If we now take theoretical aspects into account, it
appears that our preferences over the three resulting



random sets are reversed compared to the one we had
when considering the complexity of the propagation.

We prefer random set(m,F ) f ((m,F )) for the follow-
ing reason: firstly, we are sure that the information
modeled by(m,F ) f ((m,F )) is consistent, in the sense
that no mass would be affected to the empty set. Sec-
ondly, this propagation is exact, and yields a random
set. It is the most expressive theory considered here,
and thus the one allowing for the finest analysis and
modeling2.

We may then prefer(m,F ) f (πF ,πF ) because it is con-
servative when compared to(m,F ) f ((m,F )), ensur-
ing us that we are cautious and that the resulting in-
formation will be consistent. Moreover, this prop-
agation is consistent with the extension principle of
possibility theory.

Finally, although(m,F ) f ([F ,F ]) is surely the easi-
est propagation to compute, it is more optimistic
than (m,F ) f ((m,F )), implying that, compared to
(m,F ) f ((m,F )), we could dangerously reduce our
uncertainty ony by adding unwanted assumptions.
Moreover, the random set(m,F ) f ([F ,F]) can be such
that some mass is attributed to the empty set, thus in-
dicating some inconsistency in the information mod-
eled by(m,F ) f ([F ,F ]).

Finally, if faced with a practical problem, the best
solution is to compute(m,F ) f ((m,F )) if possible.
If not possible, computing(m,F ) f (πF ,πF ), yields
(m,F ) f ([F ,F]) for free (since for computing the
former we need to propagate setsAi). So, an-
other solution is to bracket the information con-
tained in (m,F ) f ((m,F )) using (m,F ) f (πF ,πF ) and
(m,F ) f ([F ,F]). Computing(m,F ) f ([F ,F ]) only is not
cautious.

Again, if f is injective, such questioning is useless
since the three propagations give the same results.

Note that from a practical point of view, restricting
ourselves to injective functions can be very limiting.
For instance, ifX is a subset ofR, requiring injectiv-
ity of f is equivalent to limiting ourselves to strictly
monotone functions onX.

2Note that it also has the advantage of being coherent with
imprecise probability theory, which is not considered here, due
to lack of space.

4 Multivariate case

We now consider that our knowledge on multiple
parametersx1, . . . ,xp respectively taking values on
X1, . . . ,Xp is tainted with uncertainty and that we
must propagate this uncertainty through a function
y = f (x1, . . . ,xp) wherey takes values on a spaceY.
Note that the results of the previous section hardly
apply, because such functions are generally not injec-
tive when useful (e.g. monotonic ones). To simplify
the problem, we here consider that our uncertainty on
each variablexi is described by a possibility distribu-
tion π i to which correspond a random set(m,F )i .

Before doing anything else, we must first specify
how we build the joint random set(m,F )1,...,p that
we are going to consider. To do this, we assume here
that the random sets are independent between them,
in the sense that, for every subsetE of ×p

i=1Xi, the
joint massm(E) is such that:

m(E) = ∑
×p

i=1Ei
j=E

Ei
j∈F i

(
p

∏
i=1

m(Ei
j))

where×p
i=1Ei

j is the Cartesian product of the focal
elementsEi

j . This assumption is commonly called
random set independence.

The assumption of random set independence can be
interpreted as the assumption that the sources of in-
formation of each variablesxi are independent (e.g.
different sensors measure each variablexi). Also,
an assumption of random set independence is con-
servative when compared to other notions of inde-
pendence [3], and can thus be used as a conservative
tool to approximate such assumptions (which are of-
ten difficult to handle in practice).

Nevertheless, propagating(m,F )1,...,p is not with-
out difficulty, since the number of focal elements to
propagate grows exponentially with the number of
the input variables tainted with uncertainty. It is thus
important to give practical approximated methods al-
lowing to reduce the computational cost of the prop-
agation, especially whenf is complex and the avail-
able resources are limited. In the sequel, we pro-
vide a technique to get an outer approximation of
(m,F )1,...,p by means of a joint possibility distribu-
tion, that can then be propagated more easily than
the general structure(m,F )1,...,p. In other words,



what we want to do is to find a joint possibility dis-
tribution π ′1,...,p such that the consonant random set
(m,F )π ′1,...,p

induced by this possibility distribution
is an outer approximation of(m,F )1,...,p. Such an
outer approximation is given by the following prop-
erty, which extends a result found by Dubois and
Prade [7] for the 2-dimensional case:

Proposition 2. For i = 1, . . . , p, given the marginal
distributionsπ i and the joint random set(m,F )1,...,p,
the minimal possibility distributionπ ′1,...,p inducing
a random set(m,F )π1,...,p

that is an outer approxi-
mation of(m,F )1,...,p is such that

π ′1,...,p(x1, . . . ,xp)= min
i=1,...,p

{(−1)p+1(πi(xi)−1)p+1}

The proof consists in a generalization of the proof
given by Dubois and Prade [7] for the 2-dimensional
case, and is omitted here due to lack of space.

In other word, we can transform each distributionπi

into π ′
i = (−1)p+1(πi − 1)p + 1 and then propagate

them by means of the possibilistic extension princi-
ple to find an outer approximation of the exact propa-
gation of(m,F )1,...,p. Let us recall that propagating
distributionsπ ′

i through f comes down to compute
π ′

f such that

π ′
f (y) = sup

x1,...,xp∈×
p
i=1Xi

f (x1,...,xp)=y

min
i=1,...,p

(π ′
i (xi))

And, since this extension principle is equivalent to
do a set propagation of eachα-cut [8], it allows us
to drastically reduce the computational effort. To il-
lustrate this, let us consider that every marginal pos-
sibility distribution πi takes the sameq different val-
ues on[0,1], then exactly propagating(m,F )1,...,p

would requireqp set propagations, while computing
the guaranteed outer approximation(m,F )π ′1,...,p

by
using proposition 2 would only requireq set propa-
gations, whatever the dimension of the input space.

Nevertheless, the input space dimension does have
an effect on our approximation, since we can
see that, for a particularπi , the transformation
(−1)p+1(πi(x)−1)p + 1 converges to 1 ifπi(x) > 0
asp increases, and is 0 ifπi(x) = 0. This means that,
asp increases, the outer approximation converges to
the Cartesian product of the supports of theπi ’s. This
loss of information is the price to pay for passing

from an exponential to a linear complexity while hav-
ing a guaranteed outer approximation (which ensures
us that we are cautious in our approximation). More-
over, the nestedness ofα-cuts ofπ ′1,...,p can again be
used to make the propagation more efficient.

Note that if our marginal uncertainty models are gen-
eralized p-boxes[F,F ]i, we can still use proposi-
tion 2 to get an outer approximation of(m,F )1,...,p,
where (m,F )1,...,p is the joint random set result-
ing from assuming random set independence be-
tween the marginal random sets induced by gener-
alized p-boxes[F ,F]i . To do this, it us sufficient
to apply the transformation of proposition 2 to each
possibility distributionsπ i

F ,π i
F

, and then propagate
all possible combination of these transformed pos-
sibility distributions by the extension principle. If
we still assume that each possibility distributions
π i

F ,π i
F

takes the sameq values, then propagating all
combinations by the extension principle will require
2p · q computations, which is generally lower3 than
qp, and thus remains more simple to compute than
(m,F )1,...,p. But it may be that, due to the lack
of injectivity, the resultf (π1

F · · ·π
p
F) is not informa-

tive. For instance supposef (x1,x2) = x1 + x2, and
xi ∈ [ai ,bi ]\[ci ,di ] with [ci ,di ]⊂ [ai ,bi ], i = 1,2. Then
π i

F = (−∞,ci ],∪[di ,+∞), but the sum of two such
subsets of reals is the whole real line.

5 Conclusion

Propagating uncertainty through a model is a com-
plex problem, and one of the main difficulty encoun-
tered by such a propagation is the high computational
effort it requires. When the model is simple or the
available resources sufficient enough, this computa-
tional effort can be supported, but it is no longer the
case when resources are limited or when the model
is complex (e.g. nuclear computer codes).

There are two ways (among others) of dealing with
this problem: to use a simple uncertainty model
and/or to use propagation methods that give approxi-
mate results but that, by doing so, alleviate the com-
putational burden of the propagation.

In this paper, we have considered the cases where
uncertainty is modeled by generalized p-boxes or

3It is lower when 2p < qp−1, soq must be at least 4 forp= 2
and 3 forp = 3, a constraint often satisfied



by single possibility distributions. Generalized p-
boxes can be seen as pairs of (comonotone) possibil-
ity distributions and as special subcases of random
sets. They are thus more expressive than single pos-
sibility distributions and are more tractable than gen-
eral random sets. They are thus "between" the two
representations, and the fact that they can be inter-
preted as upper and lower confidence bounds given
to nested sets is likely to facilitate their assessment.
This makes them quite attractive models, particu-
larly when one must reduce computational effort and
when simple possibility distributions are not found
expressive enough.

We have first studied the propagation in the univari-
ate case, where the uncertainty about only one pa-
rameter/variable is modeled by a generalized p-box.
We have proposed, compared and discussed three
different ways of propagating this generalized p-box,
each using one of its particular forms.

We have then given a brief look at the propagation in
the multivariate case, where uncertainty concernsp
parameters and is modeled byp possibility distribu-
tions. For the cases where random set independence
can be assumed, we have shown that by transforming
the marginal possibility distributions, it is possible to
get a guaranteed outer approximation whose propa-
gation cost does not increase with the input space di-
mension, whereas this cost would exponentially in-
crease with an exact propagation. The price paid
for such a complexity reduction is a loss of informa-
tion. Nevertheless, the method is capable of provid-
ing quick results that are guaranteed to encompass
the exact propagation, thus following a principle of
cautiousness (which we regard as important, particu-
larly for safety studies). Extension of the method to
generalized p-boxes has also been briefly sketched.

Perspectives include (but are not limited to) the
comparison of our approximation method in the
multivariate case to other conservative propagation
methods (e.g. use of so-called probabilistic arith-
metic [12]), the psychological evaluation of gener-
alized p-boxes in elicitation process [10], and the use
of the presented methods to practical applications.
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