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Abstract. Sources providing information about the value of a variable may not
be totally reliable. In such a case, it is common in uncertainty theories to take ac-
count of this unreliability by a so-called discounting rule. A few discounting rules
have been proposed in the framework of imprecise probability theory, but one of
the drawback of those rules is that they do not preserve interesting properties (i.e.
n-monotonicity) of lower probabilities. Another aspect that only a few of them
consider is that source reliability is often dependent of the context, i.e. a source
may be more reliable to identify some values than others. In such cases, it is use-
ful to consider contextual discounting, where reliability information is dependent
of the variable values. In this paper, we propose such a contextual discounting
rule that also preserves some of the interesting mathematical properties a lower
probability can have.
keywords: information fusion, reliability, discounting, probability sets

1 Introduction

When sources providing uncertain information about the value assumed by a variable X
on the (finite) domain X are not fully reliable, it is necessary to integrate information
about this reliability in uncertainty representations. In imprecise probability theories
(i.e. possibility theory, evidence theory, transferable belief model, lower previsions),
where imprecision in beliefs or information is explicitly modelled in uncertainty repre-
sentations, it is usual to take account of this reliability through the operation commonly
called discounting. Roughly speaking, the discounting operation consists in making the
information all the more imprecise (i.e. less relevant) as it is unreliable.

Many authors have discussed discounting operations in uncertainty theories [1,2,3].
In most cases, authors consider that reliability is modelled by a single weight (possibly
imprecise) λ whose value is in the unit interval, i.e. λ ∈ [0,1]. In a few other cases, they
consider that different weights can be given to different elements of a partition of the
referential X , and in this case reliability information is given by a vector of weights
λ = (λ1, . . . ,λL), with L the cardinality of the partition and λi ∈ [0,1]. The reason for
considering such weights is that, in some cases, the ability of the source to recognise
the true value of X may depend on this value. For example, a specialised physician will
be very reliable when it comes to recognise diseases corresponding to its speciality, but
less reliable when the patient has other diseases. A sensor may be very discriminative
for some kinds of objects, while often confusing other objects between them.
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Many rules handling more than precise single reliability weight have been proposed
in the framework of imprecise probability theory [2,4,5], in which uncertain informa-
tion is represented by bounds over expectation values or by associated convex proba-
bility sets, the two representations being formally equivalent. Both Karlsson et al. [4]
and Benavoli and Antonucci [5] consider the case where a unique but possibly impre-
cise reliability weight is given for the whole referential X , but start from different
requirements, hence proposing different discounting rules. Karlsson et al. [4] require a
discounted probability set to be insensitive to Bayesian combination (i.e. using the prod-
uct) when the source is completely unreliable. It brings them to the requirement that the
information provided by a completely unreliable source should be transformed into the
precise uniform probability distribution. Benavoli and Antonucci [5] model reliability
by the means of coherent conditional lower previsions [6] and directly integrates it to an
aggregation process, assuming that the information provided by a completely unreliable
source should be transformed into a so-called vacuous probability set (i.e. the probabil-
ity set corresponding to all probabilities having X for support). Moral and Sagrado [2]
start from constraints given on expectations value and assume that reliability weights
are precise but can be contextual (i.e., one weight per element of X ) or can translate
some (fuzzy) indistinguishability relations.

Each of these rules is justified in its own setting. However, a common defect of all
these rules is that when reliability weights are not reduced to a single precise number,
the discounted probability set is usually more complex and difficult to handle than the
initial one. This is a major inconvenient to their practical use, since using generic prob-
ability sets often implies an heavy computational burden. In this paper, we propose a
new discounting rule for lower and upper probabilities, inspired from the discounting
rule proposed by Mercier et al. [3] in the framework of the transferable belief model [7].
We show that this rule preserves both the initial probability set complexity, as well as
some of its interesting mathematical properties, provided the initial lower probability
satisfies them.

Section 2 recalls the basics of lower/upper probabilities needed here, as well as
some considerations about the properties discounting rules can satisfy. Section 3 then
presents our rule, discusses its properties and possible interpretation, and compares its
properties with those of other discounting rules.

2 Preliminary notions

This section recalls both the notion of lower probabilities and of associated sets of prob-
abilities. It then details some properties that may or may not have a given discounting
rule.

2.1 Probability sets and lower probabilities

In this paper, we consider that our uncertainty about the value assumed by a variable
X on a finite space X = {x1, . . . ,xN} is modelled by a lower probability P : ℘(X )→
[0,1], i.e. a mapping from the power set of X to the unit interval, satisfying the bound-
ary constraints P( /0) = 0, P(X ) = 1 and monotonic with respect to inclusion, i.e. for
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any A,B ⊆X such that A ⊆ B, P(A) ≤ P(B). To a lower probability can be associ-
ated an upper probability P such that, for any A ⊆X ,P(A) = 1−P(Ac), with Ac the
complement of A. A lower probability induce a probability set PP such that

PP := {p ∈ ΣX |(∀A⊆X )(P(A)≥ P(A)},

with p a probability mass, P the induced probability measure and ΣX the set (simplex)
of all probability mass functions on X . A lower probability is said to be coherent if and
only if PP 6= /0 and P(A) = min{P(A)|p ∈PP} for all A ⊆X , i.e., if P is the lower
envelope of PP on events.

Inversely, from any probability set P , one can extract a lower probability measure
defined, for any A ⊆X , as P(A) = min{P(A)|p ∈P}. Note that lower probabilities
alone are not sufficient to describe any probability set. Let P be a probability set and
P its lower probability, then the probability set PP induced by this lower probability
is such that P ⊆PP with the inclusion being usually strict. In general, one needs the
richer language of expectation bounds to describe any probability set [8].

In this paper, we will restrict ourselves to credal sets induced by lower probabili-
ties alone. Note that such lower probabilities already encompass an important number
of practical uncertainty representations, such as necessity measures [9], belief func-
tions [10] or so-called p-boxes [11]. An important classes of probability sets induced by
lower probabilities alone and encompassing these representations are the one for which
lower probabilities satisfy the property of n-monotonicity for n ≥ 2. n-monotonicity is
defined as follows:

Definition 1. A lower probability P is n-monotone, where n > 0 and n ∈N, if and only
if for any set A = {Ai|i ∈ N,0 < i≤ n} of events Ai ⊆X , it holds that

P(
⋃

Ai∈A
Ai)≥ ∑

I⊆A

(−1)|I|+1P(
⋂

Ai∈I

Ai).

An ∞-montone lower probability (i.e., a belief function) is a lower probability n-
monotone for every n. Both 2-monotonicity and ∞-monotonicity have been studied with
particular attention in the literature [12,10,13,14], for they have interesting mathemati-
cal properties that facilitate their practical handling. When processing lower probabili-
ties, it is therefore desirable to preserve such properties, if possible.

2.2 Discounting operation: definition and properties

The discounting operation consists in using the reliability information λ to transform
an initial lower probability P into another lower probability Pλ . λ can take different
forms, ranging from a single precise number to a vector of imprecise numbers. In order
to discriminate between different discounting rules, we think it is useful to list some of
the properties that they can satisfy.

Property 1 (coherence preservation, CP). A discounting rule satisfies coherence preser-
vation CP when Pλ is coherent whenever P is coherent.

This property ensures some consistency to the discounting rule.
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Property 2 (Imprecision monotony, IM). A discounting rule satisfies Imprecision monotony
IM if and only if Pλ ≤ P, that is if the discounted information is less precise than the
original one.1

This property simply means that imprecision should increase when a source is par-
tially unreliable. This may seem a reasonable request, however for some particular
cases [4], there may exist arguments against such a property.

Property 3 (n-monotonicity preservation, MP). A discounting rule satisfies n-monotonicity
preservation MP when Pλ is n-monotone whenever P is n-monotone.

Such a property ensures that interesting mathematical properties of a lower proba-
bilities will be preserved by the discounting operation.

Property 4 (lower probability preservation, LP). A discounting rule satisfies lower
probability preservation, LP when the discounted probability set Pλ resulting from
discounting is such that Pλ = PPλ , provided initial information was given as a lower
probability.

This property ensures that if the initial information is entirely captured by a lower
probability, so will be the discounted information. It ensures to some extent that the
uncertainty representation structure will keep a bounded complexity.

Property 5 (Reversibility, R). A discounting rule satisfies reversibility R if the initial
information P can be recovered from the knowledge of the discounted information Pλ

and λ alone, when λ > 0.

This property, similar to the de-discounting discussed by Denoeux and Smets [15],
ensures that, if one receives as information the discounted information together with
the source reliability information, he can still come back to the original information
provided by the source. This can be useful if reliability information is revised. This
requires the discounting operation to be an injection.

3 The discounting rule

We now propose our contextual discounting rule, inspired from the contextual discount-
ing rule proposed by Mercier at al. [3] in the context of the transferable belief model. We
show that, from a practical viewpoint, this discounting rule has interesting properties,
and briefly discuss its interpretation.

3.1 Definition

We consider that source reliability comes into the form of a vector of weights λ =
(λ1, . . . ,λL) associated to elements of a partition Θ = {θ1, . . . ,θL} of X (i.e. θi ⊆X ,
∪L

i=1θi = X and θi∩θ j = /0 if i 6= j). We denote by H the field induced by Θ . Value

1 This is equivalent to ask for PP ⊆PPλ
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one is given to λi when the source is judged completely reliable for detecting element
xi, and zero if it is judged completely unreliable. We do not consider imprecise weights,
simply because in such a case one can still consider the pessimistic case where the
lowest weights are retained.

Given a set A⊆X , its inner and outer approximations in H , respectively denoted
A∗ and A∗, are:

A∗ =
⋃

θ∈Θ
θ⊆A

θ and A∗ =
⋃

θ∈Θ
θ∩A 6= /0

θ .

We then propose the following discounting rule that transforms an initial information P
into Pλ such that, for every event A⊆X , we have

Pλ (A) = P(A) ∏
θi⊆(Ac)∗

λi, (1)

with the convention ∏θi⊆ /0 λi = 1, ensuring that P(X ) = Pλ (X ) = 1 and P( /0) =

Pλ
( /0) = 0.

Example 1. Let us illustrate our proposition on a 3-dimensional space X = {x1,x2,x3}.
Assume the lower probability is given by the following constraints:

0.1≤ p(x1)≤ 0.3; 0.4≤ p(x2)≤ 0.5; 0.3≤ p(x3)≤ 0.5.

Lower probabilities induced by these constraints (through natural extension [8]) can be
easily computed, as they are probability intervals [16]. They are summarised in the next
table:

x1 x2 x3 {x1,x2} {x1,x3} {x2,x3}
P 0.1 0.4 0.3 0.5 0.5 0.7

Let us now assume that Θ = {{x1,x2}= θ1,{x3}= θ2} and that λ1 = 0.5, λ2 = 1. The
discounted lower probability Pλ is given in the following table

x1 x2 x3 {x1,x2} {x1,x3} {x2,x3}
Pλ 0.05 0.2 0.15 0.5 0.25 0.35

Figure 1 pictures, in barycentric coordinates (i.e. each point in the triangle is a
probability mass function over X , with the probability of xi equals to the distance
of the point to the side opposed to vertex xi), both the initial probability set and the
discounted probability set resulting from the application or the proposed rule. As we
can see, only the upper probability of {x3} (the element we are certain the source can
recognise with full reliability) is kept at its initial value.

3.2 Properties of the discounting rule

Let us now discuss the properties of this discounting rule. First, by Equation (1), we
have that the results of the discounting rule is still a lower probability, and since λ ∈
[0,1], Pλ ≤ P, hence the property of imprecision monotony is satisfied. We can also
show the following proposition:
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Fig. 1. Initial (right) and discounted (left) probability sets of Example 1.

Proposition 1. Let P be a lower probability and λ a strictly positive weight vector. The
contextual discounting rule preserves the following properties:

1. Coherence
2. 2-monotonicity
3. ∞-monotonicity

See Appendix A for the proof. These properties ensure us that the discounting rule
preserves the desirable properties of lower probabilities that are coherence, as well as
other more ”practical” properties that keep computational complexity low, such as 2-
monotonicity. The discounting operator is also reversible.

Property 6 (Reversibility). Let Pλ and λ be the provided information. Then, P can be
retrieved by computing, for any A⊆X ,

P(A) =
Pλ (A)

∏θi⊆(Ac)∗ λi
.

Table 1 summarises the properties of the discounting rule proposed here, together
with the properties of other discounting rules proposed in the literature. It considers the
following properties and features: whether a discounting can cope with generic proba-
bility sets, with imprecise weights and with contextual weights, and if it satisfies or not
the properties proposed in Section 2.2. This table displays some of the motivations that
have led to the rule proposed in this paper. Indeed, while most rules presented in the
literature have been justified and have the advantages that they can be applied to any
probability set (not just the ones induced by lower probabilities), applying them also
implies losing properties that have a practical interest and importance, especially the
properties of 2− and ∞−monotonicity. When dealing with lower probabilities, our rule
offers a convenient alternative, as it preserves important properties.
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Paper Any P Imp. weights contextual CP IM MP LP R
This paper × × X X X X X X

Moral et al. [2] X × X X X × × ×
Karlsson et al. [4] X X × X × × × X
Benavoli et al. [5] X X × X X × × ×

Table 1. Discounting rules properties.

3.3 Interpretation of the discounting rule

In order to give an intuitive interpretation of the proposed discounting rule, let us con-
sider the case where Θ = {x1, . . . ,xN} and H is the power set of X , that is one weight
is given to each element of X . In this case, Eq. (1) becomes, for an event A⊆X ,

Pλ (A) = P(A) ∏
xi∈Ac

λi,

and the upper discounted probability Pλ of an event A becomes

Pλ
(A) = 1−Pλ (Ac) = 1− (P(Ac) ∏

xi∈A
λi) = 1−∏

xi∈A
λi +Pλ

(A) ∏
xi∈A

λi.

Hence, in this particular case, we have the following lemma:

Lemma 1. For any event A⊆X , we have

– Pλ (A) = P(A) iff λi = 1 for any xi ∈ Ac,
– Pλ

(A) = P(A) iff λi = 1 for any xi ∈ A.

This means that our certainty in the fact that the true answer lies in A (modeled by
P(A)) does not change, provided that we are certain that the source is able to eliminate
all possible values outside of A. Consider for instance the case P(A) = 1, meaning that
we are sure that the true answer is in A. It seems rational to require, in order to fully
trust this judgement, that the source can eliminate with certainty all possibilities outside
A. Conversely, the plausibility that the true value lies in A (P(A)) does not change when
the source is totally able to recognise elements of A. Consider again the extreme case
P(A) = 0, then it is again rational to ask for P(A) to increase if the source is not fully
able to recognise elements of A, and for it to remain the same otherwise, as in this case
the source would have recognised an element of A for sure.

Now, consider the case where Θ = {X } and H = { /0,X }, with λ the associated
unique weight. We retrieve the classical discounting rule consisting in mixing the initial
probability set with the vacuous one, that is Pλ (A) = λP(A) for any A ⊆X and we
have PPλ = {λ · p+(1−λ ) ·q|p ∈PP,q ∈ ΣX }. Note that when Θ = {θ1, . . . ,θL}
with L > 1 and λ := λ1 = . . . = λL, the lower probability Pλ obtained from P is not
equivalent to the one obtained by considering Θ = {X } with λ , contrary to the rule
of Moral and Sagrado [2]. However, if one thinks that reliability scores have to be
distinguished for some different parts of the domain X , there is no reason that the rule
should act like if there was only one weight when the different weights are equal.
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4 Conclusion

In this paper, we have proposed a contextual discounting rule for lower probabilities that
can be defined on general partitions of the domain X on which a variable X assumes
its values. Compared to previously defined rules for lower probabilities, the present
rule have the advantage that its result is still a lower probability (one does not need
to use general lower expectation bounds). It also preserves interesting mathematical
properties, such as 2− and ∞-monotonicity, which are useful to compute the so-called
natural extension.

Next moves include the use of this discounting rule and of others in practical appli-
cations (e.g. merging of classifier results, of expert opinions, . . . ), in order to empirically
compare their practical results. From a theoretical point of view, the rule presented here
should be extended to the more general case of lower previsions, so as to ensure that
extensions of n-monotonicity [17] are preserved. Although preserving n-monotonicity
for values others than n = 2 and n = ∞ has less practical interest, it would also be in-
teresting to check whether it is preserved by the proposed rule (we can expect that it
is, given results for 2-monotonicity and ∞-monotonicity). Another important issue is to
provide a stronger and proper interpretation (e.g. in terms of betting behaviour) to this
rule, as the interpretation given in the framework of the TBM [3] cannot be applied to
generic lower probabilities.

A Proof of proposition 1

Proof. Let P be the lower probability given by the source

– Let us start with property 3, as we will use it to prove the other properties. This
property has been proved by Mercier et al. [3] in the case of the transferable belief
models, in which are included normalized belief functions (i.e. ∞-monotone lower
probabilities).

– Let us now show that property 1 of coherence is preserved. First, note that if P is
coherent, it means that PP 6= /0, and since Pλ ≤ P, PPλ 6= /0 too. Now, consider a
particular event A. If P is coherent, it means that there exists a probability measure
P ∈PP such that it dominates P (i.e., P≤ P) and moreover P(A) = P(A). P being
a special kind of ∞-monotone lower probability, we can also apply the discounting
rule to P and obtain a lower probability Pλ which remains ∞-monotone (property
(3)) and is such that Pλ (A) = Pλ (A). The fact that ∏θi⊆ /0 λi = 1 ensures us that
Pλ ( /0) = 0 and Pλ (X ) = 1, hence Pλ is coherent. Also note that Pλ still dominates
Pλ , since both P and P are multiplied by the same numbers on every event to obtain
Pλ and Pλ . Therefore, ∃P′ such that Pλ ≤ Pλ ≤ P′ and P′(A) = Pλ (A) = Pλ (A).
As this is true for every event A, this means that Pλ is coherent.

– We can now show property 2. If P is 2-monotone, it means that ∀A,B ⊆X , the
inequality

P(A∪B)≥ P(A)+P(B)−P(A∩B)
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holds. Now, considering Pλ , we have to show that ∀A,B ⊆X , the following in-
equality holds

P(A∪B) ∏
θi⊆((A∪B)c)∗

λi ≥ P(A) ∏
θi⊆(Ac)∗

λi +P(B) ∏
θi⊆(Bc)∗

λi−P(A∩B) ∏
θi⊆((A∩B)c)∗

λi. (2)

Let us consider the three following partitions:

(Ac)∗ = ((Ac)∗ \ ((A∪B)c)∗)∪ ((A∪B)c)∗,

(Bc)∗ = ((Bc)∗ \ ((A∪B)c)∗)∪ ((A∪B)c)∗,

((A∩B)c)∗ = ((Ac)∗ \ ((A∪B)c)∗)∪ ((Bc)∗ \ ((A∪B)c)∗)∪ ((A∪B)c)∗.

To simplify notation, we denote by S = (A∪B)c. We can reformulate Eq (2) as

P(A∪B) ∏
θi⊆S

λi ≥ P(A) ∏
θi⊆((Ac)∗\S )

λi ∏
θi⊆S

λi +P(B) ∏
θi⊆((Bc)∗\S )

λi ∏
θi⊆S

λi

−P(A∩B) ∏
θi⊆((Ac)∗\S )

λi ∏
θi⊆((Bc)∗\S )

λi ∏
θi⊆S

λi.

Dividing by ∏θi⊆S , we obtain

P(A∪B)≥ P(A) ∏
θi⊆((Ac)∗\S )

λi +P(B) ∏
θi⊆((Bc)∗\S )

λi

−P(A∩B) ∏
θi⊆((Ac)∗\S )

λi ∏
θi⊆((Bc)∗\S )

λi.

Now, using the fact that P is 2-monotone and replacing P(A∪B) by the lower bound
P(A)+P(B)−P(A∩B) in the above equation, we must show

P(A)(1− ∏
θi⊆((Ac)∗\S )

λi)+P(B)(1− ∏
θi⊆((Bc)∗\S )

λi)

−P(A∩B)(1− ∏
θi⊆((Ac)∗\S )

λi ∏
θi⊆((Bc)∗\S )

λi)≥ 0.

Now, we can replace P(A∩B) by min(P(A),P(B)), considering that min(P(A),P(B))≥
P(A∩B). Without loss of generality, assume that P(A)≤ P(B), then we have

P(A)( ∏
θi⊆((Ac)∗\S )

λi ∏
θi⊆((Bc)∗\S )

λi− ∏
θi⊆((Ac)∗\S )

λi)+P(B)(1− ∏
θi⊆((Bc)∗\S )

λi)≥ 0

−P(A)(1− ∏
θi⊆((Bc)∗\S )

λi)( ∏
θi⊆((Ac)∗\S )

λi)+P(B)(1− ∏
θi⊆((Bc)∗\S )

λi)≥ 0

−P(A)( ∏
θi⊆((Ac)∗\S )

λi)+P(B)≥ 0

and, since P(A)(∏θi⊆((Ac)∗\S ) λi)≤ P(A)≤ P(B), this finishes the proof.
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