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Abstract. K-nearest neighbours algorithms are among the most popular existing
classification methods, due to their simplicity and good performances. Over the
years, several extensions of the initial method have been proposed. In this paper,
we propose a K-nearest neighbours approach that uses the theory of imprecise
probabilities, and more specifically lower previsions. This approach handles very
generic models when representing imperfect information on the labels of train-
ing data, and decision rules developed within this theory allows to deal with is-
sues related to the presence of conflicting information or to the absence of close
neighbours. We also show that results of the classical voting K-NN procedures
and distance-weighted k-NN procedures can be retrieved.
Keywords: Classification, lower prevision, nearest neighbours.

1 Introduction

The k-nearest neighbours (K-NN) classification procedure is an old rule [1] that uses
the notion of similarity and distance with known instances to classify a new one. Given
a vector x ∈ RD of input features, a distance d : RD × RD → R and a data set of
training samples composed of N couples (xi, yi) where xi ∈ RD are feature values
and yi ∈ Y = {ω1, . . . , ωM} is the class to which belongs the ith sample, the voting
k-NN procedure consists in choosing as the class y of x the one that is in majority in
the k nearest neighbours.

One of the main drawback of the original algorithm is that it assumes that the k-
nearest neighbors are relatively close to the instance to classify, and can act as reliable
instances to estimate some conditional densities. It also assumes that all classes or pat-
terns are well represented in the input feature space, and that the space is well sampled.
In practice, this is rarely true, and the distance between a new instance and its nearest
neighbour can be large. This makes the way basic k-NN procedure treats the training
samples questionable Also, some classes of training samples may only be imperfectly
known, and this uncertainty should be taken into account.

To integrate these various features, many extensions of the initial method have been
proposed: use of weights to account for distance between neighbours and instance to
classification [2]; use of distance and ambiguity rejection, to cope respectively with
nearest neighbours whose distance from the instance to classify is too large and with
nearest neighbours giving conflicting information [3]; use of uncertainty representations
such as belief functions to cope with uncertainty [4]. For a detailed survey of the k-NN
algorithm and its different extensions, see [5, Chap. 2].



As far as uncertainty representations are concerned, it can be argued that belief
functions do not allow to model precisely all kinds of uncertainties. For example, they
are unable to model exactly uncertainty given by probability intervals (i.e., lower and
upper probabilistic bounds given on each class). Imprecise probability theory and wal-
ley’s lower previsions [6] are uncertainty models that encompass belief functions as
special cases. In this sense, they are more general and allow for a finer modelling of
uncertainty.

In this paper, we propose and discuss a k-NN rule based on the use of Walley’s
lower prevision [6,7], and of the theory underlying them. As for the TBM k-NN pro-
cedure (based on evidence theory and on Dempster’s rule of combintion), it allows to
treat all the issues mentioned above without introducing any other parameters than the
weights on nearest neighbours, however it does so with a different approach (being
based on different calculus) and allows the use of more general uncertainty models than
the TBM. In particular, we argue that using decision rules proper to the lower previsions
approach allows to take account of ambiguities and distances without having to include
additional parameters. Using these imprecise decision rules, we also introduce a criteria
allowing to pick the "best" number k of nearest neighbours, balancing imprecision and
accuracy. After recalling the material concerning lower previsions (Section 2) needed
in this paper, we details the proposed method and its properties (Section 3), before
finishing with some experiments (Section 4).

2 Lower previsions

This section introduces the very basics about lower previsions and associated tools
needed in this paper. We refer to Miranda [7] and Walley [6] for more details.

2.1 Basics of lower previsions

In this paper, we consider that information regarding a variable X assuming its values
on a (finite) space X counting N exclusive and disjoint elements is modelled by the
means of a so-called coherent lower previsions. We denote by L(X ) the set of real-
valued bounded functions onX . A lower prevision P : K → R is a real-valued mapping
on a subsetK ⊆ L(X ). Given a lower prevision, the dual notion of upper prevision P is
defined on the set−K = {−f |f ∈ K} and is such that P (f) = −P (−f). As discussed
by Walley [6], lower previsions can be used to model information about the variable X .
He interprets P (f) as the supremum buying price for the uncertain reward f .

Given a setA ⊆ X , its lower probability P (A) is the lower prevision of its indicator
function 1(A) , that takes value one on A and zero elsewhere. The upper probability
P (A) of A is the upper prevision of 1(A) , and by duality P (A) = 1 − P (Ac). To a
lower prevision P can be associated a convex set PP of probabilities, such that

PP = {p ∈ PX |(∀f ∈ K)(Ep(f) ≥ P (f))}

with PX the set of all probability mass functions over PX andEp(f) =
∑
x∈X p(x)f(x)

the expected value of f given p. As often done, PP will be called the credal set of P .



A lower prevision is said to avoid sure loss iff PP 6= ∅ and to be coherent iff it
avoids sure loss and ∀f ∈ K, P (f) = min {Ep(f)|p ∈ PP }, i.e. iff P is the lower
envelope of PP . If a lower (upper) prevision is coherent, it corresponds to the lower
(upper) expectation of PP . If a lower prevision P avoids sure loss, its natural extension
E(g) to a function g ∈ L(X ) is defined as E(g) = min {Ep(g)|p ∈ PP }. Note that P
and its natural extension E coincide on K only when P is coherent, otherwise P ≤ E
and P (f) < E(f) for at least one f .

Lower previsions are very general uncertainty models, in that they encompass (at
least from a static viewpoint) most of the other known uncertainty models. In partic-
ular both necessity measures of possibility theory [8] and belief measures of evidence
theory [9] can be seen as particular lower previsions.

2.2 Vacuous mixture and lower previsions merging

When multiple sources provide possibly unreliable lower previsions modelling their
beliefs, we must provide rules both to take this unreliability into account and to merge
the different lower previsions into a single one, representing our final beliefs.

An extreme case of coherent lower prevision is the vacuous prevision P v and its
natural extension Ev , which are such that Ev(g) = infω∈X g(ω). It represents a state
of total ignorance about the real value of X . Given a coherent lower prevision P , its
natural extension E and a scalar ε ∈ [0, 1], the (coherent) lower prevision P ε that we
call vacuous mixture is such that P ε = εP + (1 − ε)P v . Its natural extension Eε is
such that Eε(f) = εE(f) + (1 − ε) infω∈X f(ω), for any f ∈ L(X ) and with E
the natural extension of P . ε can be interpreted as the probability that the information
P is reliable, 1 − ε being the probability of being ignorant. The vacuous mixture is a
generalise both the the well-known linear-vacuous mixture and the classical discounting
rule of belief functions. In terms of credal sets, it is equivalent to compute PP ε such that
PP ε = {εpP + (1− ε)pv|pP ∈ PP , pv ∈ PX }.

Now, if we consider k coherent lower previsions P 1, . . . , P k and their natural ex-
tensionsE1, . . . , Ek, then we can average them into a natural extensionEσ by merging
them through an arithmetic mean, that is by considering Eσ(f) = 1

k

∑k
i=1Ei(f) for

any f ∈ L(X ). This rule has been justified and used by different authors to merge
coherent lower previsions or, equivalently, convex sets of probabilities [10].

2.3 Decision rules

Given some beliefs about a (finite) variable X and a set of preferences, the goal of
decision rules is here to select the optimal values X can assume, i.e. the class to which
X may belong. Here, we assume that preferences are modeled, for each ω ∈ X , by cost
functions f ′ω , that is f ′ω(ω

′) is the cost of selecting ω′ when ω is the true class. When
uncertainty over X is represented by a single probability p, the optimal class is the one
whose expected cost is the lowest, i.e. ω̂ = argminω∈X Ep(f

′
ω), thus taking minimal

risks. If the beliefs about the value of X are given by a lower prevision P , the classical
expected cost based decision has to be extended [11].



One way to do so is to still require the decision to be a single class. The most well-
known decision rule in this category is the maximin rule, for which the final decision is
such that

ω̂ = arg min
ω∈X

Ep(f
′
ω)

this amounts to minimising the upper expected cost, i.e., the worst possible conse-
quence, and corresponds to a cautious decision. Other possible rules include minimising
the lower expected cost or minimising a value in-between.

The other way to extend expected cost is to give as decision a set (possibly, but
not necessarily reduced to a singleton) of classes, reflecting our indecision and the im-
precision of our beliefs. This requires to build, among the possible choices (here, the
classes), a partial ordering, and then to select only the choices that are not dominated
by another one. Two such extensions are the interval ordering ≤I and the maximality
ordering ≤M . Using interval ordering, a choice ω is dominated by a choice ω′, denoted
by ω ≤I ω′, iff E(f ′ω) ≤ E(fω), that is if the upper expected cost of picking ω′ is sure
to be lower than the lower expected cost of picking ω. The decision set Ω̂I is then

Ω̂I = {ω ∈ X | 6 ∃ω′s.t.ω ≤I ω′}.

Using maximality ordering, a choice ω is dominated by a choice ω′, denoted by ω ≤M
ω′, iff E(fω − fω′) > 0. This has the following interpretation: given our beliefs, ex-
changing ω for ω′ would have a strictly positive expected cost, hence we are not ready
to do so. The decision set Ω̂M is then

Ω̂M = {ω ∈ X | 6 ∃ω′s.t.ω ≤M ω′}.

The maximility ordering refines the Interval ordering and is stronger, in the sense that
we always have Ω̂M ⊆ Ω̂I . Using these decision rules, the more precise and non-
conflicting our information is, the smaller is the set of possible classes Ω̂.

3 The method

Let x1, . . . ,xN be N D-dimensional training samples, Y = {ω1, . . . , ωM} the set of
possible classes, and P i : L(Y) → [0, 1] be the lower prevision modelling our knowl-
edge about the class to which the sample xi belongs. Given a new instance x to classify,
that is to which we have to assign a class y ∈ Y , we denote by x(1), . . . ,x(k) its k or-
dered nearest neighbours (i.e. d(i) < d(j) if i ≤ j). For a given nearest neighbour x(i),
the knowledge P (i) can be regarded as a piece of evidence related to the unknown class
of x. However, this piece of knowledge is not 100% reliable, and should be discounted
by a value εi ∈ [0, 1] depending of its class, such that, for any f ∈ L(Y),

E(i),x(f) = ε(i)E(i) + (1− ε(i)) inf
ω∈Y

f(ω).

It seems natural to ask for ε be a decreasing function of d(i), since the further away is
the neighbour, the less reliable is the information it provides about the unknown class.
Similarly to Denoeux proposal, we can consider the general formula

ε = ε0φ(d(i)),



where φ is a non-increasing function that can be depended of the class given by x(i). In
addition, the following conditions should hold:

0 < ε0 < 1 ; φ(0) = 1 and lim
d→∞

φ(d) = 0.

The first condition imply that even if the new instance has the same input as one
training data sample, we do not consider it to be 100% reliable, as the relation link-
ing the input feature space and the output classes is not necessarily a function. From
P (1),x, . . . , P (k),x, we then obtain a combined lower prevision P such that

Px =
1

k

k∑
i=1

P (i),x.

Using Px as the final uncertainty model for the true class of x, one can predict its
final class, either as a single class by using a maximin-like criteria or as a set of pos-
sible classes by using maximality or interval dominance. Using maximality or interval
dominance is a good way to treat both ambiguity or large distances with the nearest
neighbours. Indeed, if all nearest neighbours agree on the output class and are close to
the new instance, the obtained lower prevision Px will be precise enough so that the
criteria will end up pointing only one possible class (i.e., Ω̂M , Ω̂I will be singletons).
On the contrary, if nearest neighbours disagree or are far from the new instance, Px

will be imprecise or indecisive, and Ω̂M , Ω̂I will contain several possible classes.

3.1 Using lower previsions to choose k

A problem when using the k-nearest neighbour procedure is to choose the "best" num-
ber k of neighbours to consider. This number is often selected as the one achieving the
best performance in a cross-validation procedure, but k-NN rules can display erratic
performances if k is slightly increased or decreased, even if it is by one.

We propose here a new approach to guide the choice of k, using the features of lower
previsions: we propose to choose the value k achieving the best compromise between
imprecision and precision, estimated respectively from the number of optimal classes
selected for each test sample, and from the percentage of times where the true class is
inside the set of possible ones.

Let (xN+1, yN+1), . . . , (xN+T , yN+T ) be the test samples. Given a value k of
nearest neighbours, let ΩkM,i denote the set of classes retrieved by maximality crite-
ria for xN+i, and δki : 2|Y| → {0, 1} the function such that δki = 1 if yN+i ∈ ΩkM,i and
0 otherwise. That is, δki is one if the right answer is in the set of possible classes. Then,
we propose to estimate the informativeness Infk and the accuracy Acck of our k-NN
method as:

Infk = 1−
∑T
i=1 |ΩkM,i| − T
T (M − 1)

; Acck =

∑T
i=1 δ

k
i

T

Note that informativeness has value one iff |ΩkM,i| = 1 for i = 1, . . . , T , that is deci-
sions are precise, while accuracy measures the number of times the right class is in the



set of possible classes. This means that the less informative is a classifier, the more accu-
rate it will be, since the right answer will be in the set of possible classes every time. We
then estimate the global performance GPk as the value GPk = βInfk + (1− β)Acck,
that is a weighted average between precision and accuracy, with β ∈ [0, 1] the impor-
tance given to informativeness. Letting k vary, we then select the best value k∗ as

k∗ = arg min
k=1,...,N

GPk.

The idea of this rule is to choose the value k∗ achieving the best compromise between
informativeness and accuracy (as some evaluation methods used for experts in classical
probabilities).

3.2 Precise training samples and unitary costs

Let us now consider a particular case, namely the one where all training samples xi
have a single class yi as output, and where the cost function (called here unitary) fω of
choosing ω is fω(ω′) = 1 − δω,ω′ where δω,ω′ is the classical Kronecker delta (= 1
if ω = ω′, zero otherwise). This assumptions corresponds to the one of classical k-
NN procedures. Given these cost functions and a lower prevision P on Y , the lower
expectation for fω is

E(fω) = E({ω}c) = 1− E({ω}),

that is one minus the upper probability of the singleton ω. Similarly, the upper expecta-
tion of fω is one minus the lower probability of the singleton ω.

The lower prevision P i and its natural extensionEi modeling our uncertainty about
the output of a training sample xi is simply, for any f ∈ L(Y), the valueEi(f) = f(yi)
where yi is the output of xi. We also have Ei(f) = Ei(f), and can now show that our
method extends classical k-NN

Proposition 1. Let k be the number of nearest neighbours considered. If training sam-
ples are precise, costs unitary and discounting rates ε(1) = . . . = ε(k) = ε, then the
method used with a maximin decision criteria gives the same result as a classical k-NN
rule.

Proof. Let us consider a given ω ∈ Y and its unitary cost function fω . Let us now
compute the upper expectation of fω , or equivalently one minus the lower probability
of {ω}. Given the k nearest neighbour, the lower probability E({ω}) of {ω} is

E({ω}) = 1

k

k∑
i=1

εδω,y(i) + (1− ε) inf fω =
ε

k

k∑
i=1

δω,y(i) .

The highest value of E({ω}) is reached for the value ω ∈ Y which have the maximal
number of representative in the k neighbours, and since the value maximising this lower
probability is the same as the one minimising the upper expectation of unitary cost
functions, this finishes the proof.



Proposition 2. Let k be the number of nearest neighbours considered. If training sam-
ples are precise, costs unitary and discounting rates ε(i) = wi are equal to some
weights, then the method used with a maximin decision criteria gives the same result as
a weighted k-NN rule with the same weights.

Proof. Similar to the proof of Prop. 1.

The case of precise training samples and unitary costs have another interesting prop-
erty, namely the one that the set of possible classes obtained by maximality criteria co-
incide with the one obtained by interval dominance. This avoids any choice and allows
using computational procedures used for interval-dominance, which are simpler.

Proposition 3. Let k be the number of nearest neighbours considered. If training sam-
ples are precise and costs unitary, then Ω̂M = Ω̂I for any new instance.

Proof. To prove this proposition, we will simply show that for ω, ω′, the two conditions
to have ω ≥I ω′ and ω ≥M ω′ both coincide in this particular case. First, we have
ω ≥M ω′ if and only if E(1({w}) − 1({w′}) ) > 0. Using Eq. and the particular case
that we consider here, we have

E(1({w}) − 1({w′}) ) =
1

k

(
k∑
i=1

ε(i)δω,y(i) −
k∑
i=1

ε(i)δω′,y(i) −
k∑
i=1

(1− ε(i))

)
.

The last part of the equation right-hand side being due to the fact that infω∈Y(1({w}) −
1({w′}) ) = −1 if ω 6= ω′. Hence, ω ≥M ω′ iff the number between parenthesis is
positive. Now, we have that ω ≥I ω′ if and only if E(1({w}) ) ≥ E(1({w′}) ). In our
particular case, this becomes

1

k

k∑
i=1

ε(i)δω,y(i) ≥
1

k

(
k∑
i=1

ε(i)δω′,y(i) +

k∑
i=1

(1− ε(i))

)
.

Moving the right hand side to the left finishes the proof.

4 Experiments

Since Proposition 2 indicates that the results of the proposed method can be made equiv-
alent (in terms of prediction accuracy) to those of a weighted k-NN method, we refer to
studies comparing the results of different weighted k-NN method to have an idea about
the accuracy of the method.

Instead, we have preferred to experiment our method to select the best number k
of nearest neighbours on some classical benchmark problems. We used a leave-one-out
validation method. The class of each sample is predicted using the N − 1 remaining
samples. Infk, Acck and GPk are averaged over the N obtained results. We also com-
puted the average error rate using a maximin criterion, which gives results equivalent
to the weighted k-NN with weights given by the discounting factor.



Name # instances # input variables # output classes
Glass 214 9 6

Image segmentation 2100 19 7
Ionosphere 351 9 2

Letter recognition 2500 16 26

Table 1. Experiment data sets

As discussing and optimising φ is not the topic of the paper, we consider the simple
heuristic where, for a given training data (x, y), φ(dx) = exp−d/dy , with dy the average
distance between elements of the training set having y for class. We fix ε0 = 0.99, in
order to not increase too quickly the imprecision.

Four different classification problems taken from the UCI repository [12] are con-
sidered. They are summarized in Table 1 . Results obtained for each of them are summa-
rized in Fig 1. In each graphs are displayed, for different values of k nearest neighbours,
the informativeness Infk, the precision Acck, the global score GPk as well as the pre-
cision obtained by using a maximin criterion, equivalent to the one obtained with a
weighted k-NN method using the discounting weights.
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FIG 1.D Image segmentation data setFIG 1.C Letter recognition data set
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Fig. 1. Experiment results



Note that, here, both the choices of β, of ε0 and of φ() are of importance, for they
will directly influence the imprecision of Px and hence the decision imprecision con-
cerning the class of x and the optimal k∗. As could be expected, the informativeness
globally decreases with the number k of nearest neighbours, while the number of sam-
ple xi whose true class is in the set of optimal classes |ΩkM,i| globally increases. Note
that this imprecision is due to two different causes: the presence of conflicting informa-
tion in (in this case, the different classes to which belongs the neighbours are optimal)
and distance of the neighbours to the sample (in this case, Px is very imprecise and no
class dominates another, i.e., they are all optimal).

The increase in informativeness that we can see when going from k = 2 to k =
3 for the Glass and Image segmentation data sets are due to the fact that immediate
neighbours provide conflicting information that do not make decisions less informative,
but provoke, for some sample, a decision shift from their true class to a false class.
Such an increase is then the clue that some classes boundaries may be quite difficult to
identify in the input space. A smooth decrease of informativeness is then the clue that
there are no significant conflict in the information provided by neighbours, as for the
ionosphere and letter recognition data.

The initial number of samples that have imprecise classifications due to the distance
with their neighbours can be evaluated from the informativeness for k = 1. Indeed, if
k = 1, there can be no conflict between neighbours, and the imprecise classification can
only come from the large distance and the resulting discounting weight. It is therefore
also a good way to evaluate the density of the data set, and its representativeness (for
example, points in the ionosphere data set seems to have large distances between them,
compared to the others).

Although they could probably be improved by optimised choices of the metric,
of parameters β, ε0, φ(), our results show that allowing for a small imprecision can
improve significantly the resulting classification, and the confidence we have in the
classifier answer, without adding additional parameters such as a rejection or distance
threshold. They also indicate that, in general, best results are obtained for a small num-
ber of neighbours. Finally, if one wants a unique class as answer, it is always possible to
come back to the solution of a classical weighted k-NN method. An alternative would
be to use another classifier and its answer to precisiate the imprecise answer given by
our method.

5 Conclusion and perspectives

In this paper, we have defined a first K-NN method based on lower previsions (equiv-
alent to convex probability sets). As lower previsions are very generic models of un-
certainty, using them allows to handle labels coming from expert opinions expressed
in very different ways. Using the theory of lower previsions also allows to settle the
problem of ambiguity (conflicting information) and absence of neighbours close to a
given instance, without adding additional parameters. This can be done by using de-
cision rules that selects sets of possible (i.e., optimal) classes rather than single ones
when information delivered by neighbours is ambiguous or unreliable.



Using this particular feature of lower previsions, we have proposed a simple and
new means to select the "best" number k of nearest neighbours to consider. Namely,
the number that achieves the best balance between accuracy (good classification) and
precision (decision retaining only a small number of classes).

This paper have exposed the basics of a K-NN method using lower previsions. Many
surrounding topics remains to be investigated, among which:

– how to distinguish imprecise decisions due to ambiguity from those due to unreli-
able (i.e. "far away") neighbours ?

– how to optimise (as done in [13]) the whole procedure so that it can give better
results for a given problem ?

– how the framework of lower previsions can help in solving the problem of instances
having uncertain / missing input values ?

– how does this method compare to other (basic) classification methods using lower
previsions, such as the Naive credal classifier [14] ?
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