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Abstract. Selecting a particular summative (i.e., formally equivalent to a prob-
ability distribution) kernel when filtering a digital signal can be a difficult task.
To circumvent this difficulty, one can work with maxitive (i.e., formally equiva-
lent to a possibility distribution) kernels. These kernelsallow to consider at once
sets of summative kernels with upper bounded bandwith. Theyalso allow to per-
form a robustness analysis without additional computational cost. However, one
of the drawbacks of filtering with maxitive kernels is sometimes an overly impre-
cise output, due to the limited expressiveness of summativekernels. We propose
to use a new uncertainty representation, namely cloud, to achieve a compromise
between summative and maxitive kernels, avoiding some of their respective short-
comings. The proposal is then experimented on a simulated signal.
Keywords: Signal treatment, interval-valued fuzzy sets, generalised p-boxes.

1 Introduction

Reconstructing a continuous signal from a set of sampled andpossibly corrupted ob-
servations is a common problem in both digital analysis and signal processing [1]. In
this context, kernel-based methods can be used for different purposes: reconstruction,
impulse response modelling, interpolation, (non)-lineartransformations, filtering, etc.

Most kernels used in signal processing are linear combination of summative kernels,
which are positive functions with an integral equal to one. Asummative kernel can
therefore be associated to a particular probability distribution. Still, how to choose a
particular kernel and its parameters to filter a given signalis often a tricky question.
Using maxitive kernels [2], that is kernels that are formally equivalent to possibility
distributions [3], can overcome this difficulty. This can bedone by interpreting maxitive
kernels and associated possibility distributions [3] as sets of summative kernels (or sets
of probability distributions [4]). The output of a maxitivekernel-based filtering is an
interval valued signal that gathers all the outputs of conventional filtering based on the
summative kernels belonging to the considered set. This property allows to perform a
rosbustness or sensitivity analysis of the filtering duringthe filtering process itself.

The main interests of maxitive kernels are their simplicityof representation and their
computational tractability. The price to pay for such features is a limited expressiveness
and the impossibility to exclude unwanted summative kernels from the set represented
by maxitive kernels in some applications. For instance, this set always includes a Dirac
measure, meaning that the filtered interval-valued signal always includes the original
(noisy) signal itself.



To overcome this shortcoming of maxitive kernel while keeping their interesting
features, we propose to use another uncertainty representation, called clouds [5], as
a compromise between summative and maxitive kernels. we call the resulting kernels
cloudy kernels. The interest of cloudy kernels is two-fold:they are more expressive
than maxitive kernels, the latter being a special case of theformer [6], and their use
only require low computational efforts, an important feature in signal processing.

We first introduce summative and maxitive kernels, before showing how cloudy ker-
nels can act as a compromise between the two (Section 2). The computational aspects
of using cloudy kernels are then discussed, and an efficient algorithm to perform signal
filtering with them is devised (Section 3). Some experimentson a simulated signal are
then performed and their results discussed (Section 4).

2 Between summative and maxitive kernels: cloudy kernels

This section recalls the basics of summative and maxitive kernels. It then introduces
cloudy kernels and shows how they can model summative kernels with lower-bounded
bandwidth . For readability purpose, we will restrict ourselves to representations defined
on the real lineR and its discretizationX .3

2.1 Summative kernels

A summative kernelκ is formally equivalent to a Lebesgue-measurable probability dis-
tribution κ : R→ R

+, and can be interpreted as such. The associated probabilitymea-
surePκ : B → [0,1] defined on the real Borel agebraB is such that, for any measurable
subsetA⊆R (also called an event),Pκ(A) =

∫

A κ(x)dx.
In this paper, we restrict ourselves to bounded, symmetrical and mono-modal ker-

nels. To shorten notations, we consider that kernels belongto a family of kernels param-
eterized by their bandwidth∆ and defined on a compact interval[−∆ ,∆ ] ⊆ R centred
around zero. Typical kernels belonging to such families arerecalled and represented in
Table 1. We denote them byκ∆ , and they are such thatκ∆ (x) = κ∆ (−x). To a summative
kernelκ∆ can be associated its cumulative distribution functionFκ∆ : [−∆ ,∆ ] → [0,1]
such that, for anyx∈ [−∆ ,∆ ], Fκ∆ (x) =

∫ x
−∆ κ∆ (x)dx which is such thatFκ∆ (0) = 1/2

andFκ∆ (x)+Fκ∆ (−x) = 1.

2.2 Maxitive kernels

A maxitive kernelπ is a normalised functionπ : R→ [0,1] with at least onex∈R such
thatπ(x) = 1. A maxitive kernel can be associated to a possibility distribution [3], hence
inducing two (lower and upper) confidence measures, respectively called necessity and
possibility measures. They are such that, for any eventA⊆ R, we have:

Π(A) = max
x∈A

π(x) N(A) = 1−Π(Ac) = inf
x∈Ac

(1−π(x)), (1)

3 extension of presented methods to some product spaceR
p is straightforward.



Name κ Shape

Triangular κ(x) = (1−| x
∆ |)I∆

x
0

Uniform κ(x) = 1
2∆ I∆ x

0

Table 1.Some classical summative kernels

with Ac the complement ofA. A maxitive kernelπ can be associated to a set of sum-
mative kernelsPπ dominated by the possibility measureΠ of π , such thatPπ =
{κ ∈ PR|∀A⊆ R,P(A)≤ Π(A)}, with PR the set of all summative kernels overR. If a
summative kernelκ is in Pπ , we say, by a small abuse of language, thatπ includesκ .
This interpretation makes maxitive kernels instrumental tools to filter signal when the
identification of a single summative kernel is difficult.

There are many ways to build a maxitive kernel including a given summative ker-
nel [7]. Here, we consider the so-called Dubois-Prade transformation, since it provides
the most specific solution. Given a summative kernelκ∆ , the maxitive kernelπκ∆ re-
sulting from the Dubois-Prade transformation is such that

πκ∆ (x) =

{

2∗Fκ∆ (x) if x≤ 0
2∗ (1−Fκ∆(x)) if x> 0

We will denote byπ+
κ∆
,π−

κ∆
the following functions

π−
κ∆
(x) =

{

πκ∆ (x) if x≤ 0
1 if x> 0

π+
κ∆
(x) =

{

1 if x≤ 0
πκ∆ (x) if x> 0.

(2)

The (convex) setPπκ∆
includes, among others, all summative kernelsκ∆ ′ with ∆ ′ ∈

[0,∆ ] [7]. Hence, maxitive kernels allow to consider families of kernels whose band-
width are upper-bounded, but not lower-bounded, which in some situations may be a
shortcoming. For instance, in those cases where it is desirable to smoothen a signal, the
interval-valued signal resulting from an imprecise filtering should not envelope the ini-
tial signal, i.e., the Dirac measure should be excluded fromthe set of summative kernels
used to filter. It is therefore desirable to dispose of representations allowing to model
sets of summative kernels whose bandwidths are both lower- and upper-bounded. Next
sections show that the uncertainty representation called clouds can meet such a need.

2.3 Cloudy kernels

Clouds, the uncertainty representation used to model cloudy kernels, have been intro-
duced by Neumaier [5]. On the real line, they are defined as follows:



Definition 1. A cloud is a pair of mappings[π ,η ] fromR to the unit interval[0,1] such
that η ≤ π and there is at least one element x∈ R such thatπ(x) = 1 and one element
y∈ R such thatη(y) = 0

A cloud [π ,η ] induces a probability familyP[π ,η] such that

P[π ,η] = {κ ∈ PR|Pκ({x|η(x)≥ α})≤ 1−α ≤ Pκ({x|π(x)> α})}. (3)

And P[π ,η] induces lower and upper confidence measuresP[π ,η],P[π ,η] such that, for
any eventA⊆R, P[π ,η](A) = infκ∈P[π,η] Pκ(A) andP[π ,η](A) = supκ∈P[π,η]

Pκ(A). Also
note that, formally, clouds are equivalent to interval-valued fuzzy sets having boundary
conditions (i.e.,π(x) = 1 andη(y) = 0 for some(x,y) ∈ R

2). A family of clouds that
will be of particular interest here are the comonotonic clouds [6]. They are defined as
follows:

Definition 2. A cloud is comonotonic if∀x,y∈ R, π(x)< π(y)⇒ η(x)≤ η(y)
A cloudy kernel is simply a pair of functions[π ,η ] that satisfies Definition 1. As

for maxitive kernels, we can associateP[π ,η] to the corresponding set of summative
kernels. In this paper, we will restrict ourselves to cloudykernels induced by bounded,
symmetric and unimodal comonotonic clouds. Again, to make notations easier, we will
consider that they are defined on the interval[−∆ ,∆ ].

Definition 3. A unimodal symmetric cloudy kernel defined on[−∆ ,∆ ] is such that, for
any x∈ [−∆ ,∆ ], η(x) = η(−x), π(x) = π(−x) and η ,π are non-decreasing (non-
increasing) in[−∆ ,0] ([0,∆ ])

As for maxitive kernels, given a unimodal symmetric cloudy kernel, we will denote
by η+,η− the functions such that

η−(x) =

{

η(x) if x≤ 0
1 if x> 0

η+(x) =

{

1 if x≤ 0
η(x) if x> 0.

(4)

Two particular cases of comonotonic symmetric cloudy kernel are the so-called thin
and fuzzy clouds. A cloudy kernel is said to be thin if∀x∈ R, π(x) = η(x), i.e., if the
two mappings coincide. A cloudy kernel is said to be fuzzy if∀x∈ R, η(x) = 0, i.e. if
the lower mappingη conveys no information.

A cloudy kernel is pictured in Figure 1. Note that a fuzzy cloudy kernel[π ,η ] in-
duces the same summative kernel setP[π ,η] as the maxitive kernelπ . We now recall
some useful properties of clouds and cloudy kernels.

Proposition 1. A cloudy kernel[π ,η ] is included in another one[π ′,η ′] (in the sense
thatP[π ,η] ⊆ P[π ′,η ′]) if and only if, for all x∈ R, [π(x),η(x)] ⊆ [π ′(x),η ′(x)].

Hence, given a cloudy kernel[π ,η ], any thin cloud[π ′,η ′] such thatη ≤η ′ =π ′≤ π
is included in[π ,η ]. Inversely, for any thin cloud[π ′,η ′] not satisfying this condition
(i.e.∃x such thatη ′(x)< η(x) or π ′(x)> π(x)), we haveP[π ,η]∩P[π ′,η ′] = /0

Proposition 2. The convex setP[π ,η] induced by a thin cloud[π ,η ] includes the two
summative kernels having for cumulative distributions F−,F+ such that, for all x∈ R

F−(x) = η−(x) = π−(x) ; F+(x) = 1−η+(x) = 1−π+(x). (5)

P[π ,η] being a convex set, any convex combination ofF−,F+ is also in the thin cloud.



x
0

1

η− η+

π− π+

∆inf

∆sup

Fig. 1.Example of cloudy kernel

2.4 Summative kernel approximation with cloudy kernels

Let us show that cloudy kernels can remediate to the main drawback of maxitive ker-
nels, i.e. they can model sets of summative kernelsκ∆ where∆ is lower and upper-
bounded. Assume that we want to represent the set of summative kernelsκ∆ such that
∆ ∈ [∆inf ,∆sup]. To satisfy this requirement, we propose to consider the cloudy kernel
[π ,η ][∆inf ,∆sup]

such that, for anyx∈ R:

π∆sup(x) =

{

2∗F∆sup(x) if x≤ 0
2∗ (1−F∆sup(x)) if x≥ 0

; η∆inf (x) =

{

2∗F∆inf(x) if x≤ 0
2∗ (1−F∆inf(x)) if x≥ 0

(6)

Let us first show that this cloud contains all the desired summative kernels, starting with
the summative kernels such that∆ = ∆inf and∆ = ∆sup].

Proposition 3. The cloudy kernel[π ,η ][∆inf ,∆sup]
includes the two summative kernels

κ∆inf andκ∆sup having for cumulative distributions F∆inf ,F∆sup.

Proof. From the definition of our cloudy kernel, we have that the thincloudy kernels
having for distributionsπ∆sup andη∆inf are included in[π ,η ][∆inf ,∆sup]

(Proposition 1).

Let us denoteF−
π ,F+

π and F−
η ,F+

η the cumulative distributions given by Eq. (5)
respectively applied to the thin cloudy kernelsπ∆sup andη∆inf . By Proposition 2, they
are included in the cloudy kernel[π ,η ][∆inf ,∆sup]

, and sinceP[π ,η][∆inf ,∆sup]
is a convex

set,1/2F−
π +1/2F+

π and1/2F−
η +1/2F+

η are also included in the kernel. These two convex
mixtures being equals toF∆inf ,F∆sup, this ends the proof.

Proposition 4. The cloudy kernel[π ,η ][∆inf ,∆sup]
includes any summative kernelκ∆

having F∆ for cumulative distribution with∆ ∈ [∆inf ,∆sup].

Proof. We know, by Proposition 2, that the thin cloudy kernel[π ,η ]F∆
such that

π∆ (x) =

{

2∗F∆ if x≤ 0
2∗ (1−F∆) if x≥ 0

includes the cumulative distribution[π ,η ]F∆
. Also, we have thatF∆inf(x) ≤ F∆ (x) ≤

F∆sup(x) for x ≤ 0, andF∆sup(x) ≤ F∆ (x) ≤ F∆inf(x) for x ≥ 0, due to the symmetry of
the retained summative kernels. This means thatπ∆sup ≤ π∆ ≤ η∆inf , therefore the thin
cloudy kernel[π ,η ]F∆

is included in[π ,η ][∆inf ,∆sup]
, and this ends the proof.



Let us now show that the proposed cloudy kernels exclude summative kernels with
a bandwidth smaller than∆inf, among which is the Dirac measure.

Proposition 5. Any kernelκ∆ having F∆ for cumulative distribution with∆ ≤ ∆inf or
∆ ≥ ∆sup is not included in the cloudy kernel[π ,η ][∆inf ,∆sup]

Proof. Similar to the one of Proposition 4, considering that the thin cloud induced by
F∆ when∆ ≤ ∆inf is not included in the cloudy kernel[π ,η ][∆inf ,∆sup]

.

These proposition show that cloudy kernels are fitted to our purpose, i.e., represent-
ing sets of summative kernels with lower- and upper-boundedbandwidth. Still, as for
maxitive kernels, other kernels than the summative kernelsbelonging to the familyκ∆
are included inP[π ,η][∆inf ,∆sup]

.

3 Practical computations

In practice, imprecise filtering is done by extending the expectation operator to repre-
sentations inducing probability sets, in our case by using Choquet integrals [8]. In this
section, we recall what is a Choquet integral and its links with expectation operators.
We then propose an efficient algorithm to compute this Choquet integral for cloudy
kernels. To shorten notations[π ,η ][∆inf ,∆sup]

,η∆inf andπ∆sup will be denoted by[π ,η ],η
andπ . Since computations are achieved on a discretised space, weconsider that we are
working on a finite domainX of N elements. In our case, this space corresponds to a
finite sampling of the signal.

3.1 Expectation operator and Choquet integral

Consider the domainX = {x1, . . . ,xN} with an arbitrary indexing of elementsxi (not
necessarily the usual ordering between real numbers) and a real-valued functionf (here,
the sampled values of the signal) onX , together with a discretized summative kernel
κi , i = 1, . . . ,N, whereκi = κ(xi). Classical convolution between the kernelκ and the
sampled signalf is equivalent to compute the expectationEκ( f ) = ∑N

i=1 κi f (xi).
When working with a setP of summative kernels defined onX , the expecta-

tion operatorE( f ) becomes inter-valued[E( f ),E( f )], withE( f ) = infκ∈P Eκ( f ) and
E( f ) = supκ∈P Eκ( f ). These bounds are generally hard to compute, still there are
cases where practical tools exist that make their computation more tractable. First re-
call [9] that lower and upper confidence measures ofP on an eventA⊆ X are such
that P(A) = infκ∈P Pκ(A) and P(A) = supκ∈P Pκ(A) and are dual in the sense that
P(A) = 1−P(Ac). If P satisfy a property of 2-monotonicity, that is if for any pair
{A,B} ⊆ X we haveP(A∩B) +P(A∪B) ≥ P(A) +P(B), then expectation bounds
can be computed by a Choquet Integral.

Consider a positive bounded function4 f onX . If we denote by() a reordering of
elements ofX such thatf (x(1))≤ . . .≤ f (x(N)), the Choquet Integral giving the lower

4 Positivity is not constraining here, since ifc is a constantE( f + c) = E( f )+ c and the same
holds forE.



expectation reads

CP( f ) = E( f ) =
N

∑
i=1

( f (x(i))− f (x(i−1))P(A(i)), (7)

with f (x(0)) = 0 andA(i) = {x(i), . . . ,x(N)}. Upper expectation can be computed by
replacing the lower measureP by the upper oneP. The main difficulty to evaluate
Eq. (7) is then to compute the lower (or upper) confidence measure for theN setsAi .

3.2 Imprecise expectation with cloudy kernels

Cloudy kernels satisfying Definition 2 induce lower confidence measure that are∞-
monotone [10,6], hence Choquet integral can be used to compute lower and upper ex-
pectations. Let us now detail how the lower confidence measure value on events can
be computed efficiently (upper confidence measure are obtained by duality). Cloudy
kernels[π ,η ] defined onX induce a complete pre-order≤[π ,η] between elements of
X , in the sense thatx ≤[π ,η] y if and only if η(x) ≤ η(y) andπ(x) ≤ π(y). Given a
setA ⊆ X , we denote respectively byxA and byxA its lowest and highest elements
with respect to≤[π ,η]. We now introduce the concepts of[π ,η ]-connectedsets, that are
instrumental in the computation of lower confidence measures.

Definition 4. Given a cloudy kernel[π ,η ] overX , a subset C⊆X is [π ,η ]-connected
if it contains all elements between xC and byxC, that is C= {x∈ X |xC ≤[π ,η] x≤[π ,η] xC}

We denote byC the set of all[π ,η ]-connectedsets ofX . Now, any eventA can be
inner approximated by another eventA∗ such thatA∗ =

⋃

C∈C ,C⊂A .C is the union of all
maximal[π ,η ]-connectedsets included inA. Due to an additivity property of the lower
confidence measure on[π ,η ]-connectedsets [11],P(A) is then

P(A) = P(A∗) = ∑
C∈C ,C⊂A

P(C) (8)

We consider that elements ofX are indexed accordingly to≤[π ,η], i.e., elements
x1, . . . ,xN are indexed such thati ≤ j if and only if η(xi) ≤ η(x j) or π(xi) ≤ π(x j).
Given this ordering, the lower confidence measure of a[π ,η ]-connected setC= {xi, . . . ,x j}
is given by the simple formula

P(C) = max{0,η(x j+1)−π(xi−1)},

with η(xN+1) = 1 andπ(x0) = 0. Note that, as≤[π ,η] is a pre-order, we have to be
cautious about equalities between some elements. Figure 2 illustrates a cloudy kernel
with 7 (irregularly) sampled values, its associated indexing and order.

Algorithm 1 describes how to compute lower confidence measures and the incre-
mental summation giving the lower expectation. At each step, the[π ,η ]-connected sets
forming A(i) are extracted and the corresponding lower confidence measure is com-
puted. The value of the Choquet integral is then incremented. To simplify the algorithm,
we assume≤[π ,η] to be an order (i.e., it is asymmetric). Note that two orderings and in-
dexing are used in the algorithm: the one where elements are ordered by values off ,
denoted by(), and the other where elements are ordered using≤[π ,η], without paren-
thesis. Except if the functionf is increasingly monotonic inR, the indexing following
the natural order of numbers is never used.
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Fig. 2. Discretization of cloudy kernels and indexing of elements aroundx7 (eachxi

corresponds to a sampled value).

Algorithm 1: Algorithm for lower expectations: basic ideas
Input : f ,[π,η], N (number of discretized points)
Output : Lower/upper expectations
E= 0 ;
for i = 1, . . . ,N do

Computef (x(i))− f (x(i−1)) ;

Extract[π,η]-connected sets such thatA(i) =C1∪ . . .∪CMi ;
With Cj = {xk| j ≤ k≤ j} ;

ComputeP(A(i)) = ∑Mi
j=1 max(0,η(x j+1)−π(x j−1)) ;

E= E+[ f (x(i))− f (x(i−1))]×P(A(i))

4 Experiment: comparison with summative and maxitive kernels

Let us now illustrate the advantage of using cloudy kernels rather than simple maxitive
kernels when filtering a noisy signal. Figure 3 shows in cyan a(noisy) signal that has
to be filtered by a smoothing kernel. Imprecise kernels (cloudy or maxitive) can be
used if one does not know the exact shape of the impulse response of the filter, but
can assume that this filter is symmetric, centred and has a lower and upper bounded
bandwidth∆ ∈ [∆inf ,∆sup]. The signal pictured in 3 has been obtained by summing nine
sine waves with random frequencies and then by adding a normal centered noise with a
standard deviationσ = 5.

Assume that the summative kernels to be considered are the uniform ones bounded
by ∆ ∈ [0.018,0.020]. The most specific maxitive kernel dominating this family isthe
triangular kernel with a bandwidth equal to 0.02 (see [2]). The bounds obtained by using
such a kernel are displayed on Figure 3 (dotted red and blue lines). As expected, the
inclusion of the Dirac measure in the maxitive kernel gives very large upper and lower
filtered bounds, that encompass the whole signal (i.e. the signal is always in the interval
provided by the maxitive kernel). Given our knowledge aboutthe desired bandwidth, it
is clearly desirable to also take account of the lower bound 0.018.

Cloudy kernels can model a more specific set of summative kernels, accounting
for the lower bound, by using the cloudy kernel composed of two triangular maxitive
kernels, the lower kernel having a bandwidth∆inf = 0.018 and the upper kernel having



time (msec)

si
g

n
a

l a
m

p
lit

u
d

e maxitive upper enveloppe

maxitive lower enveloppe

cloudy upper enveloppe

cloudy lower enveloppe

original signal
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a bandwidth∆sup= 0.020, and filtering the signal with Algorithm 1. The result is also
pictured in Figure 3 (full red and blue lines). We can see thatthe lower and upper bounds
are now much tighter, as expected. Hence, we now have bounds to whose are associated
a good confidence and that are more informative.

To illustrate the capacity of maxitive and cloudy kernels toencompass the desired
kernels, we have plotted on 4 ten filtered signals (in cyan) obtained by using differ-
ent symmetric centered summative kernels whose bandwidth belongs to the interval
[∆inf ,∆sup]. Every filtered signal belongs to the interval-valued signal obtained by using
the cloudy kernel based approach.
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5 Conclusion

Both summative and maxitive kernels suffer from some defects when it comes to filter
a given signal. The former asks for too much information and the latter is often too im-
precise to give tight information. In this paper, we have proposed to use cloudy kernels
(using the uncertainty representations called cloud) as a compromis between the two
representations to achieve imprecise linear filtering. We have also proposed a simple
and efficient (but not necessarily the most efficient) algorithm to compute lower and
upper bounds of the filtered signal.

Our experiments show that using cloudy kernels does have theexpected properties.
Compared to summative and maxitive kernels, they allow to retrieve reliable and in-
formative envelope for the filtered signal. However, it appears that envelopes resulting
from the filtering using cloudy kernel are still not so smooth. We suspect that this is due
to summative kernels inside the cloudy kernels for which probability masses are con-
centrated around some particular points (i.e. mixtures of Dirac measures). To avoid this,
we could consider the use of technics already proposed [12] to limit the accumulation
of such probability masses.
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