Using cloudy kernels for imprecise linear filtering
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Abstract. Selecting a particular summative (i.e., formally equivl® a prob-

ability distribution) kernel when filtering a digital sighean be a difficult task.

To circumvent this difficulty, one can work with maxitivedi, formally equiva-

lent to a possibility distribution) kernels. These kerralew to consider at once
sets of summative kernels with upper bounded bandwith. alszyallow to per-

form a robustness analysis without additional computalieost. However, one
of the drawbacks of filtering with maxitive kernels is somsds an overly impre-
cise output, due to the limited expressiveness of summkgikeels. We propose
to use a new uncertainty representation, namely cloud,hieae a compromise
between summative and maxitive kernels, avoiding someedftéspective short-
comings. The proposal is then experimented on a simulagealsi
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1 Introduction

Reconstructing a continuous signal from a set of sampledoasdibly corrupted ob-
servations is a common problem in both digital analysis agiad processing [1]. In
this context, kernel-based methods can be used for diffgueposes: reconstruction,
impulse response modelling, interpolation, (non)-lineansformations, filtering, etc.

Most kernels used in signal processing are linear comlzinati summative kernels,
which are positive functions with an integral equal to onesummative kernel can
therefore be associated to a particular probability distion. Still, how to choose a
particular kernel and its parameters to filter a given signalften a tricky question.
Using maxitive kernels |2], that is kernels that are formatuivalent to possibility
distributions|[3], can overcome this difficulty. This candmne by interpreting maxitive
kernels and associated possibility distributidns [3] ds sesummative kernels (or sets
of probability distributions[[4]). The output of a maxitikernel-based filtering is an
interval valued signal that gathers all the outputs of catieaal filtering based on the
summative kernels belonging to the considered set. Thiggstp allows to perform a
rosbustness or sensitivity analysis of the filtering duthmgfiltering process itself.

The main interests of maxitive kernels are their simplioityepresentation and their
computational tractability. The price to pay for such featus a limited expressiveness
and the impossibility to exclude unwanted summative karfreim the set represented
by maxitive kernels in some applications. For instance, $bt always includes a Dirac
measure, meaning that the filtered interval-valued sighwedys includes the original
(noisy) signal itself.



To overcome this shortcoming of maxitive kernel while kegptheir interesting
features, we propose to use another uncertainty repreisemtealled clouds([5], as
a compromise between summative and maxitive kernels. weheatesulting kernels
cloudy kernels. The interest of cloudy kernels is two-fdltky are more expressive
than maxitive kernels, the latter being a special case ofdhmer [€], and their use
only require low computational efforts, an important featin signal processing.

We first introduce summative and maxitive kernels, befoosviihg how cloudy ker-
nels can act as a compromise between the two (Sdction 2).drhputational aspects
of using cloudy kernels are then discussed, and an efficigotitnm to perform signal
filtering with them is devised (Sectidlh 3). Some experiments simulated signal are
then performed and their results discussed (Settion 4).

2 Between summative and maxitive kernels: cloudy kernels

This section recalls the basics of summative and maxitivaeds. It then introduces
cloudy kernels and shows how they can model summative kewith lower-bounded
bandwidth . For readability purpose, we will restrict ouves to representations defined
on the real lineR and its discretizatio?”

2.1 Summative kernels

A summative kernek is formally equivalent to a Lebesgue-measurable proligloiis-
tributionk : R — R™, and can be interpreted as such. The associated probabédiy
surePy : # — [0,1] defined on the real Borel ageb#ais such that, for any measurable
subsefA C R (also called an eventlpx (A) = [, K (x)dx

In this paper, we restrict ourselves to bounded, symmétaizéh mono-modal ker-
nels. To shorten notations, we consider that kernels batbadamily of kernels param-
eterized by their bandwidth and defined on a compact interjalA,A] C R centred
around zero. Typical kernels belonging to such familiesracalled and represented in
Table1. We denote them by, and they are such thaf (X) = ka (—x). To a summative
kernelk, can be associated its cumulative distribution functip: [-A,A] — [0, 1]
such that, for anx € [-A4,4], Fx, (X) = /X4 Ka(x)dxwhich is such thaFy, (0) = 1/2
andFy, (X) + Fg, (—x) = 1.

2.2 Maxitive kernels

A maxitive kernelrtis a normalised functiorr: R — [0, 1] with at least one € R such
thatrr(x) = 1. A maxitive kernel can be associated to a possibility itistion [3], hence
inducing two (lower and upper) confidence measures, regpictalled necessity and
possibility measures. They are such that, for any edentR, we have:

M(A) = max(x) N(A) = 1- (A% = inf (1— m(x)), Q)

= inf
XEA XEAC

3 extension of presented methods to some product spRde straightforward.



Name K Shape

Triangular KX)=(1=[2Dla
—s L~ 5 X
0
Uniform K(X) = 25 1a X
0

Table 1.Some classical summative kernels

with A® the complement oA. A maxitive kernelrr can be associated to a set of sum-
mative kernels?; dominated by the possibility measufé of 1, such that%,; =

{k e Pr|VACR,P(A) < (A}, with Pk the set of all summative kernels o\r If a
summative kernet is in &2, we say, by a small abuse of language, thatcludesk.
This interpretation makes maxitive kernels instrumerdald to filter signal when the
identification of a single summative kernel is difficult.

There are many ways to build a maxitive kernel including @&gigummative ker-
nel [7]. Here, we consider the so-called Dubois-Prade toamation, since it provides
the most specific solution. Given a summative kel the maxitive kernerg, re-
sulting from the Dubois-Prade transformation is such that

- 2xFg,(x) ifx<O0
Thp (X) = {2*(1_FKA(><)) if x>0

We will denote byn,;z , T, the following functions

T, (x) ifX<O0 _ 1 ifx<o0
WA(X)—{ 1 ifx>0 T@(X)_{m%(x) if x> 0. (2)

The (convex) set@% includes, among others, all summative kernels with A’ €
[0,A] [7]. Hence, maxitive kernels allow to consider families efrikels whose band-
width are upper-bounded, but not lower-bounded, which mesaituations may be a
shortcoming. For instance, in those cases where it is désita smoothen a signal, the
interval-valued signal resulting from an imprecise filtgrishould not envelope the ini-
tial signal, i.e., the Dirac measure should be excluded ttenset of summative kernels
used to filter. It is therefore desirable to dispose of regmé&tions allowing to model
sets of summative kernels whose bandwidths are both lowdrupper-bounded. Next
sections show that the uncertainty representation caliedis can meet such a need.

2.3 Cloudy kernels

Clouds, the uncertainty representation used to model gl&adhels, have been intro-
duced by Neumaier [5]. On the real line, they are defined devist



Definition 1. A cloud is a pair of mappingst, ] fromR to the unit intervalO, 1] such
thatn < rand there is at least one element R such thatri(x) = 1 and one element
y € R such thatn(y) =0

A cloud [, n] induces a probability family?,; ,, such that
P ={k ePr[P({Xn(x) > a}) <1-a <P({Xnx) >a})}.  (3)

And P induces lower and upper confidence meas#gs. P such that, for
any evenA C R, Py (A) = infxe ., P (A) andPj;p)(A) = SURce 7, P« (A). Also
note that, formally, clouds are equivalent to intervaleeal fuzzy sets having boundary
conditions (i.e.j1(x) = 1 andn (y) = 0 for some(x,y) € R?). A family of clouds that
will be of particular interest here are the comonotonic d®g]. They are defined as
follows:

Definition 2. A cloud is comonotonic ifx,y € R, 11(x) < 1i(y) = n(x) < n(y)

A cloudy kernel is simply a pair of functiongr, n] that satisfies Definition]1. As
for maxitive kernels, we can associaté;;, to the corresponding set of summative
kernels. In this paper, we will restrict ourselves to clolidynels induced by bounded,
symmetric and unimodal comonotonic clouds. Again, to makations easier, we will
consider that they are defined on the intefval, A].

Definition 3. A unimodal symmetric cloudy kernel defined/ed\,A] is such that, for
any xe [-4,4], n(x) = n(—x), nm(x) = n(—x) and n, T are non-decreasing (non-
increasing) in[—A, 0] ([0,4])

As for maxitive kernels, given a unimodal symmetric clougyrel, we will denote
by n™,n~ the functions such that

_ nx) ifx<o 1 ifx<o0
n (X)—{ 2 s o ’7+(X)—{n(x) if x> 0. @
Two particular cases of comonotonic symmetric cloudy kieame the so-called thin
and fuzzy clouds. A cloudy kernel is said to be thivife R, r(x) = n(x), i.e., if the
two mappings coincide. A cloudy kernel is said to be fuzzyxfe R, n(x) =0, i.e. if
the lower mapping) conveys no information.

A cloudy kernel is pictured in Figufd 1. Note that a fuzzy dgwkernel|m, n] in-
duces the same summative kernel $&f ,; as the maxitive kernefr. We now recall
some useful properties of clouds and cloudy kernels.

Proposition 1. A cloudy kerne[r, ] is included in another onf7, n’] (in the sense
that 2, n) € Py ) if and only if, for all xe R, [11(x),n (x)] € [17(x),n"(X)].

Hence, given a cloudy kerngt, n], any thin cloud ', n’] suchthany <n'=n'<mn
is included in[m, n]. Inversely, for any thin cloud’, n’] not satisfying this condition
(i.e. Ix such thaiy’(x) < n(x) or 1 (x) > 11(x)), we haveZ,; N Py p = 0

Proposition 2. The convex se?’|,; ;) induced by a thin cloudr, n] includes the two
summative kernels having for cumulative distributions F* such that, for all xc R

Fr)=n(x=m(x ; F(x=1-n"(x)=1-m(x). ()

Py being a convex set, any convex combinatiorfrof F* is also in the thin cloud.
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Fig. 1. Example of cloudy kernel

2.4 Summative kernel approximation with cloudy kernels

Let us show that cloudy kernels can remediate to the mainlzhekvof maxitive ker-
nels, i.e. they can model sets of summative kerrglsvhereA is lower and upper-
bounded. Assume that we want to represent the set of sumaiaimels<, such that
A € [Ains, Asug. To satisfy this requirement, we propose to consider thedsidkernel
[71.N](3,y.0509 SUCh that, for ang € R:

_ ] 2xFag (%) ifx<0 [ 2xFp(x)  ifx<0
Masup(X) = {2*(1—AFAsup(x)) it x>0 Man(X) = {2*(1—AFAinf(x)) it x>0 (©

Let us first show that this cloud contains all the desired sativa kernels, starting with
the summative kernels such thlt= Aj,s andA = Agyy.

Proposition 3. The cloudy kerne[n,n]mmf’Asup] includes the two summative kernels
K @ndKag,, having for cumulative distributionsaf, Fag,,-

Proof. From the definition of our cloudy kernel, we have that the tioudy kernels
having for distributionsz,,, andny, are included irjr, n][Ainf-,Asup] (Propositior 11).

Let us denoteéF;,F;f and F,;,F,;r the cumulative distributions given by EdJ (5)
respectively applied to the thin cloudy kerneig,,, andn,,,. By Propositior 2, they

are included in the cloudy kernétr,n], leuy» N since@[nmm Ao is a convex
K ’ inf >

set,}/2F; +1/2F; andl/2F; +1/2F; are also included in the kernel. These two convex
mixtures being equals ®y, ;, Fa,,, this ends the proof.

inf?
Proposition 4. The cloudy kerne[n,n][Ainf’Asup} includes any summative kerngh
having R for cumulative distribution witt\ € [Aint, Asyy.-

Proof. We know, by Propositiof]2, that the thin cloudy kerfreln]g, such that

(x) = 2xFp if x<0
B =1 24(1-Fy) ifx>0

includes the cumulative distributionr, n]g, . Also, we have thaFa,(X) < Fa(x) <
Fagp(X) for x <0, andFy,,(X) < Fa(x) < Fap,(x) for x > 0, due to the symmetry of
the retained summative kernels. This means tlag;p < m < Na,, therefore the thin
cloudy kernelr, n]g, is included in[m, rI][Ainf-,Asup]' and this ends the proof.



Let us now show that the proposed cloudy kernels exclude stiverkernels with
a bandwidth smaller thafyj,;, among which is the Dirac measure.

Proposition 5. Any kernelk, having Fa for cumulative distribution witld < Ajn or

A > Asypis not included in the cloudy kernp’r,n][Ainf’Asup]

Proof. Similar to the one of Propositidd 4, considering that the tioud induced by
Fa whenA < Ajy¢ is not included in the cloudy kern{alr,n][Ainf’Asud.
These proposition show that cloudy kernels are fitted to ago@se, i.e., represent-
ing sets of summative kernels with lower- and upper-bourmediwidth. Still, as for
maxitive kernels, other kernels than the summative ketmglisnging to the family

are included in@[m]mmfﬁsud.

3 Practical computations

In practice, imprecise filtering is done by extending theemtption operator to repre-
sentations inducing probability sets, in our case by usingdDet integrals [8]. In this
section, we recall what is a Choquet integral and its linkih ekpectation operators.
We then propose an efficient algorithm to compute this Chbauegral for cloudy
kernels. To shorten notatiofis, n] s, a4 Nan aNdTig,, Will be denoted by, n},n
andrt. Since computations are achieved on a discretised spaamngaer that we are
working on a finite domainZ” of N elements. In our case, this space corresponds to a
finite sampling of the signal.

3.1 Expectation operator and Choquet integral

Consider the domair®” = {X,..., Xy} with an arbitrary indexing of elemenss (not
necessarily the usual ordering between real numbers) aa-aalued functiorf (here,
the sampled values of the signal) éh, together with a discretized summative kernel
Ki,i =1,...,N, wherek; = k(x;). Classical convolution between the kerreand the
sampled signaf is equivalent to compute the expectatidn(f) = SN, ki f(x).

When working with a set” of summative kernels defined ofd”, the expecta-
tion operatoi(f) becomes inter-valuef(f),E(f)], withE(f) = inf,c » E«(f) and
E(f) = sup,c» E«(f). These bounds are generally hard to compute, still there are
cases where practical tools exist that make their compurtatiore tractable. First re-
call [9] that lower and upper confidence measures®bn an evenA C 2" are such
that P(A) = infxc2 Pc(A) and P(A) = sup.c » P«(A) and are dual in the sense that
P(A) = 1—-P(A%). If P satisfy a property of 2-monotonicity, that is if for any pair
{A,B} C 2" we haveP(ANB)+ P(AUB) > P(A) + P(B), then expectation bounds
can be computed by a Choquet Integral.

Consider a positive bounded funciibh on 2. If we denote by() a reordering of
elements of2” such thatf (x1)) < ... < f(x()), the Choquet Integral giving the lower

4 Positivity is not constraining here, sincedis a constanE(f +c¢) = E(f) + ¢ and the same
holds forE.



expectation reads

N

Ce(f) =E(f) = _Zl(f(x(n) — f(Xi-1))P(A)), ()
1=

with f(x)) = 0 andAjy = {X(j),---,Xn)}- Upper expectation can be computed by

replacing the lower measui by the upper on®. The main difficulty to evaluate

Eq. (2) is then to compute the lower (or upper) confidence oredsr theN setsA;.

3.2 Imprecise expectation with cloudy kernels

Cloudy kernels satisfying Definitiodl 2 induce lower confidermeasure that are-
monotone([10,6], hence Choquet integral can be used to cenhpuer and upper ex-
pectations. Let us now detail how the lower confidence meagalue on events can
be computed efficiently (upper confidence measure are autdig duality). Cloudy
kernels[m, n] defined on2” induce a complete pre-ordet;,; ; between elements of
2, in the sense that <, y if and only if n(x) < n(y) and r(x) < ri(y). Given a
setA C 27, we denote respectively by, and byXa its lowest and highest elements
with respect to< ;. We now introduce the concepts af, n]-connectedsets, that are
instrumental in the computation of lower confidence measure

Definition 4. Given a cloudy kernéit,n] over.2", a subsetGC 2" is [, n]-connected
if it contains all elements betweep and byxc, thatis C= {x € 2" |xc <(m ) X iy X}

We denote by¢ the set of al[ T, n]-connectedets of2". Now, any evenf can be
inner approximated by another evéfatsuch thath. = Uccy cca-C is the union of all
maximal[r, n]-connectedets included iA. Due to an additivity property of the lower
confidence measure 6m, n]-connectedets[11]P(A) is then

P(A) =P(A,) = P(C 8
P(A)=P(A) CE%%CA_() (8)

We consider that elements ¢f” are indexed accordingly €, i.e., elements
X1,...,Xn are indexed such that< j if and only if n(x) < n(x;j) or m(x) < m(x;j).
Giventhis ordering, the lower confidence measure[af g]-connected s& = {x;,...,X;}
is given by the simple formula

P(C) = max{0,n(Xj+1) — m(Xi-1)},
with n(xn+1) = 1 and7(xo) = 0. Note that, as<|y, is a pre-order, we have to be
cautious about equalities between some elements. Higuiesgates a cloudy kernel
with 7 (irregularly) sampled values, its associated indgxind order.

Algorithm[1 describes how to compute lower confidence messand the incre-
mental summation giving the lower expectation. At each,stegyr, n]-connected sets
forming A, are extracted and the corresponding lower confidence me#swom-
puted. The value of the Choquet integral is then incremefiedimplify the algorithm,
we assumeS|, ;) to be an order (i.e., it is asymmetric). Note that two ordgsiand in-
dexing are used in the algorithm: the one where elementsrderad by values of,
denoted by(), and the other where elements are ordered usipg,, without paren-
thesis. Except if the functiofi is increasingly monotonic i®, the indexing following
the natural order of numbers is never used.



XX X4 X X7 X5 X3 X
X1 S(n) X2 S X3 S{mn) X4 S(mn] X6 S(mn) X6 S(mn) X7

Fig. 2. Discretization of cloudy kernels and indexing of elementsuad x; (eachx;
corresponds to a sampled value).

Algorithm 1: Algorithm for lower expectations: basic ideas

Input: f,[m, n], N (number of discretized points)

Output: Lower/upper expectations

E=0;

fori=1,...,Ndo
Computef (X(I)) — f(x(ifl)) )
Extract[r, n]-connected sets such thgt) =C1U...UCy, ;
With Cj = {xj <k <T};
ComputeP(Aj)) = 3%y max(0,n (%, 1) — m(xj 1)) ;
E=E+[f(xi)— f(xi—1)] x P(Aj))

4 Experiment: comparison with summative and maxitive kernds

Let us now illustrate the advantage of using cloudy kerraisar than simple maxitive
kernels when filtering a noisy signal. Figlide 3 shows in cydnaisy) signal that has
to be filtered by a smoothing kernel. Imprecise kernels @oar maxitive) can be
used if one does not know the exact shape of the impulse respuirthe filter, but
can assume that this filter is symmetric, centred and has erlemd upper bounded
bandwidthA € [Aint, Asug. The signal pictured inl3 has been obtained by summing nine
sine waves with random frequencies and then by adding a neentered noise with a
standard deviatioo = 5.

Assume that the summative kernels to be considered are ifeerarones bounded
by A €[0.018 0.020. The most specific maxitive kernel dominating this familyhe
triangular kernel with a bandwidth equal t®@ (seel[2]). The bounds obtained by using
such a kernel are displayed on Figlite 3 (dotted red and bies)li As expected, the
inclusion of the Dirac measure in the maxitive kernel givesparge upper and lower
filtered bounds, that encompass the whole signal (i.e. trakis always in the interval
provided by the maxitive kernel). Given our knowledge alibetdesired bandwidth, it
is clearly desirable to also take account of the lower boud®)

Cloudy kernels can model a more specific set of summativeekgraccounting
for the lower bound, by using the cloudy kernel composed af thiangular maxitive
kernels, the lower kernel having a bandwidth = 0.018 and the upper kernel having



60 . cloudy upper enveloppe
maxitive upper enveloppe , i

40

signal amplitude

30 |}

maxitive lower enveloppe

original signal

0 1 1 1 1 1 1 1 1 |
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

time (msec)

Fig. 3. Superposition of the original signal (cyan), the maxitwgrecise filtering (dot-
ted blue - upper, dotted red - lower) and the cloud based iogediltering (blue -
upper, red - lower)

a bandwidths,, = 0.020, and filtering the signal with Algorithbd 1. The result Isa
pictured in Figur€l3 (full red and blue lines). We can seetthatower and upper bounds
are now much tighter, as expected. Hence, we now have boomdsise are associated
a good confidence and that are more informative.

To illustrate the capacity of maxitive and cloudy kerneletawompass the desired
kernels, we have plotted dn 4 ten filtered signals (in cyariabd by using differ-
ent symmetric centered summative kernels whose bandweltngs to the interval
[Aint, Asugl- Every filtered signal belongs to the interval-valued silgrbtained by using
the cloudy kernel based approach.

. cloudy upper enveloppe
60 maxitive upper enveloppe "

a0

signal amplitude

30—

maxitive lower enveloppe

filtered signals | |

= 1 1 1 1 L n L 1 1 1 J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0..9 1
time (msec)

Fig. 4. Superposition of nine filtered signals (cyan), the maxifivprecise filtering
(dotted blue - upper, dotted red - lower) and the cloud basgddcise filtering (blue -
upper, red - lower)



5 Conclusion

Both summative and maxitive kernels suffer from some defetten it comes to filter
a given signal. The former asks for too much information dredatter is often too im-
precise to give tight information. In this paper, we havegm®ed to use cloudy kernels
(using the uncertainty representations called cloud) asngcomis between the two
representations to achieve imprecise linear filtering. \Akgehalso proposed a simple
and efficient (but not necessarily the most efficient) aliponito compute lower and
upper bounds of the filtered signal.

Our experiments show that using cloudy kernels does havexihected properties.
Compared to summative and maxitive kernels, they allow taere reliable and in-
formative envelope for the filtered signal. However, it agugethat envelopes resulting
from the filtering using cloudy kernel are still not so smoMfe suspect that this is due
to summative kernels inside the cloudy kernels for whichbplulity masses are con-
centrated around some particular points (i.e. mixturesigidmeasures). To avoid this,
we could consider the use of technics already propdsed §lhit the accumulation
of such probability masses.
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