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Abstract. In this paper, we consider a trust system where the trust
in an agent is evaluated from past assessments made by other agents.
We consider that trust is evaluated by values given on a finite scale. To
model the agent trustworthiness, we propose to build imprecise prob-
abilistic models from these assessments. More precisely, we propose to
derive probability intervals (i.e., bounds on singletons) using two different
approaches: Goodman’s multinomial confidence regions and the impre-
cise Dirichlet model (IDM). We then use these models for two purposes:
(1) evaluating the chances that a future assessments will take particular
values, and (2) computing an interval summarizing the agent trustwor-
thiness, eventually fuzzyfying this interval by letting the confidence value
vary over the unit interval. We also give some elements of comparison
between the two approaches.
Keywords: trustworthiness, probability intervals, expectations bounds

1 Introduction

The notion of trust and how to evaluate it has taken more and more importance
in computer science with the emergence of the semantic web (particularly in
the field of e-commerce or security) and multi-agent systems. Once done, trust
evaluation can be used to compare agents or to make an absolute judgement
whether an agent can be trusted. To perform such an evaluation, many trust
systems have been developed in the past years (see Sabater and Sierra [1] for a
review).

Note that the notion of trust as well as the information used to evaluate it can
take many forms [2]. One can differentiate between individual-level and system-
level trusts, the former concerning the trust one has in a particular agent, while
the latter concerns the overall system and the way it ensures that no one will
be able to use the system in a selfish way (i.e., to its own profit). The collected
information about the trustworthiness of an agent may be direct (coming from
past transactions one has done with this agent) or indirect (provided by third-
party agents), and when it is indirect, it may be a direct evaluation of the agent
reputation or information concerning some of its characteristics.

In this paper, we consider that the information whether an agent (called here
the trustee) can be trusted or not is given in the form of past evaluations provided
by other agents on a numerical scale X = {−n, . . . ,−1, 0, 1, . . . , n} ranging from
−n to n. In this bipolar scale, a rate of −n means that the trustee is totally



untrusted, while n means that it is totally trusted, 0 standing for neutral. For
sake of clarity, we will also refer to the elements of X as X = {x1, . . . , x2n+1}.
Using the classification proposed in Ramchurn et al. [2], we are working here with
indirect information concerning the individual-level trust of the system and the
reputation of an agent.

In [3], Ben Naim and Prade discuss the interest of summarising past eval-
uations by intervals, as they are more informative than mere mean values and
precise points (as interval imprecision is a valuable information reflecting our
quantity of knowledge), and are far easier to read than the whole set of evalua-
tions. Eventually, the summarising interval can be reduced to a single evaluation,
should such precision be needed.

Consider a counting vector Θ = {θ1, . . . , θ2n+1} where θi is the number
of times an agent has given xi as its evaluation of the trustee truthfulness,
and θ̂ =

∑
i θi the total number of evaluations. The problem we consider here

is how to summarise the information provided by this counting vector in an
interval representation describing the past behaviour of the trustee. To do so, we
propose to use an imprecise probabilistic model well fit to represent uncertainty
on multinomial data (here, the ratings), namely probability intervals [4], and
to use the notion of lower and upper expectations to compute the summarising
interval. As we shall see, this simple model allows for efficient computations of
a summarising interval.

Section 2 recalls some basics of probability intervals and presents the two
uncertainty models built from the counting vector Θ. Section 3 then details
how a summarising interval can be built from these models. It also provides
some elements of comparison by exploring the properties of these intervals with
respect to Θ and the possibilities of building fuzzy interval as summary rather
than a single one.

2 The model

Let us first recall some elements about probability intervals, before studying how
they can be derived from Θ by using confidence regions.

2.1 Probability intervals

Probability intervals as uncertainty models have been studied extensively by
De Campos et al. [4]. Probability intervals on a space X = {x1, . . . , x2n+1} are
defined as a set L = {[li, ui]|i = 1, . . . , 2n+1} of intervals such that li ≤ p(xi) ≤
ui, where p(xi) is the unknown probability of element xi. In this paper, built
probability intervals satisfy a number of reasonable conditions usually required
to work with this uncertainty representation, namely

2n+1∑
i=1

li ≤ 1 ≤
2n+1∑
i=1

ui, (1)



and for i = 1, . . . , 2n+ 1

ui +
∑

j∈{1,...,2n+1}
j 6=i

lj ≤ 1 ; li +
∑

j∈{1,...,2n+1}
j 6=i

uj ≥ 1. (2)

If probability intervals satisfy these conditions, then they induce a set of proba-
bility measures PL such that

PL = {p ∈ PX |i = 1, . . . , 2n+ 1, li ≤ p(xi) ≤ ui},

with PX the set of all probability measures over X . From PLcan be com-
puted lower and upper probabilities on any event A, respectively as P (A) =
infp∈PL

P (A) and P (A) = supp∈PL
P (A). In the case of probability intervals,

their computations are facilitated, since we have [4]

P (A) = max(
∑
xi∈A

li, 1−
∑
xi 6∈A

ui) ; P (A) = min(
∑
xi∈A

ui, 1−
∑
xi 6∈A

li)

The question is now how probability intervals can be derived from the count-
ing vector Θ of past evaluations. Had we an infinite number of evaluations at
our disposal, it would be reasonable to adopt as a model of the trustee trust-
worthiness the probability distribution p∞ corresponding to limiting frequencies.
Therefore, we should ask probability intervals to tend towards such frequencies,
i.e.,

li −−−→
θ̂→∞

p∞(xi) ; ui −−−→
θ̂→∞

p∞(xi).

In practice there may only be a few evaluations available, and in any case a finite
quantity of them. Therefore, the chosen uncertainty representation should both
tend towards the limiting frequencies and reflect our potential lack of informa-
tion.

We propose two approaches to build such representations. The first use Good-
man’s multinomial confidence intervals [5], while the second use the popular Im-
precise Dirichlet Model (IDM for short) [6]. The two approaches as a basis of
trustee evaluation are then compared in Section 3.

2.2 Building intervals from Θ: first approach

In this first approach, we propose to use Goodman’s multinomial confidence
intervals [5] as our representation. Given a space X and a counting vector Θ,
Goodmans intervals [lG,αi , uG,αi ] with confidence level α read, for i = 1, . . . , 2n+1,

lG,αi =
b+ 2θi −

√
∆α
i

2(θ̂ + b)
, uG,αi =

b+ 2θi +
√
∆α
i

2(θ̂ + b)
, (3)

where b is the quantile of order 1 − (1−α)/(2n+1) of the chi-square distribution
with one degree of freedom and where

∆α
i = b

(
b+

4θi(θ̂ − θi)
θ̂

)
.



Note that b is an increasing function of α and n, meaning that confidence inter-
val imprecision increases as α increases and as n (the number of possibilities)
increases. These probability intervals satisfy Conditions (1) and (2). They tend
towards limiting frequencies and the distance between li and ui decreases as more
information is collected (i.e. ui − li is a decreasing function of θi and θ̂). Also,
they are very simple to compute, since only Θ is needed to estimate them. We
will denote by LG,α the obtained probability intervals and by PG,αL the induced
probability set.

Example 1. Consider a space X = {−2,−1, 0, 1, 2} containing 5 possible val-
ues. The following counting vector Θ = (0, 9, 13, 11, 17) summarises the various
evaluations given by different agents. The probability intervals obtained with a
confidence level α = 0.95 are summarised in Table 1

x1 x2 x3 x4 x5
uG,0.95i 0.117 0.354 0.441 0.398 0.522

lG,0.95i 0 0.081 0.135 0.107 0.196

Table 1. Example 1 probability intervals

2.3 Building intervals from Θ: second approach

The second approach we propose consists in using the IDM [6] to build the con-
fidence intervals. The IDM basically extends the classical multinomial Dirichlet
model by considering all Dirichlet distributions as the initial set of prior distri-
butions. Intervals extracted from the IDM depend on a hyperparameter s ≥ 0
that determines the influence of prior information on the posterior information.
In the IDM, the value s can be seen as a way to settle the speed of convergence
of probability intervals to limiting frequencies p∞, this speed decreasing when s
value increases. An often suggested interpretation for s is that it represents the
number of "unseen" observations, and on most applications, s ∈ {1, 2}.

Given a space X , a counting vector Θ and a positive value s, intervals
[lI,si , uI,si ] resulting from the use of the IDM read, for i = 1, . . . , 2n+ 1,

lI,si =
θi

θ̂ + s
, uI,si =

θi + s

θ̂ + s
. (4)

As for Goodman’s interval, their computation only requires to know Θ, and the
distance ui − li decreases as more information is collected. We will denote by
LI,s the obtained probability intervals and by PI,sL the induced probability set.

Example 2. Consider the space and counting vector of Example 1. The prob-
ability intervals obtained with the IDM and a value s = 2 are summarised in
Table 2.



x1 x2 x3 x4 x5
uI,2i 0.038 0.212 0288 0.25 0.365

lI,2i 0 0.173 0.25 0.212 0.327

Table 2. Example 2 probability intervals

As we can see, these intervals are much narrower than the ones obtained
in Example 1. This indicates that small values of s may be unwarranted in
the current application (as an agent would be most of the time unwilling to
make precise inference from a small number of evaluations). Note that it may
be difficult to obtain a general result relating the interval imprecision obtained
by the two approaches, since the difference uI,si − l

I,s
i does not depend on the θi,

while the difference uG,αi − lG,αi does.

Note that in both approaches, one can interpret the built intervals L, and
the associated probability set PL as a predictive model providing information
about the next possible evaluations. In particular, lower and upper probabilities
of an event A gives an interval [P (A), P (A)] characterising our uncertainty about
wether the next evaluation will fall in the set A.

3 Summarising Interval

In the first part of this section, we consider that we work with a fixed confidence
level α (in the first approach) or with a fixed hyper-parameter s (in the second
approach), for sake of clarity. These assumptions will be relaxed in the last
subsection.

3.1 Lower and upper expectations

Let us first recall some elements about the notions of lower and upper expec-
tations. Given a probability set P defined over a domain X and a real-valued
bounded function f : X → R, one can compute the lower and upper expectations
of f , EP(f) and EP(f) as

EP(f) = inf
p∈P

Ep(f), EP(f) = sup
p∈P

Ep(f),

with Ep(f) the expected value of f with respect to probability distribution p.
Lower and upper expectations are dual, in the sense that E(f) = −E(−f), and
have the property that if a constant value µ is added to f , E(f +µ) = E(f)+µ
and E(f + µ) = E(f) + µ.

When the lower (resp. upper) probabilities of a credal set P satisfies the
property of 2-monotonicity (resp. 2-alternance), that is when, for any two events
A,B ⊆ X , we have P (A)+P (B) ≤ P (A∪B)+P (A∩B) (resp. P (A)+P (B) ≥
P (A ∪ B) + P (A ∩ B)), one can use the Choquet integral [7] to evaluate the



lower and upper expectations. Consider a positive bounded function1 f . If we
denote by () a reordering of elements of X such that f(x(1)) ≤ . . . ≤ f(x(2n+1)),
Choquet integrals giving lower and upper expectations are given by

E(f) =

N∑
i=1

(f(x(i))− f(x(i−1))P (A(i)), (5)

E(f) =

N∑
i=1

(f(x(i))− f(x(i−1))P (A(i)), (6)

with f(x(0)) = 0 and A(i) = {x(i), . . . , x(N)}. In Walley’s [8] behavioural inter-
pretation of lower and upper expectations, E(f) represents the maximum buying
price an agent would pay for a gamble whose gains are represented by f , and
E(f) the minimum selling price an agent would be ready to accept for the gamble
f .

3.2 Expectation bounds as a summarising interval

Let us now come back to our trust evaluation problem, and consider the first
approach. Information about the trustee are given by probability intervals LG,α
resulting from the counting vector Θ and inducing a probability set PG,αL . It is
known [4] that probability intervals induce 2-monotone and 2-alternating lower
and upper probabilities.

Given this information LG,α, we propose to summarise the trustworthiness
of the trustee as the interval given by lower and upper expectations of a function
f such that f(x1) = −n, f(x2) = −n + 1, . . . , f(xn+1) = 0, . . . , f(x2n+1) = n

with respect to the probability set PG,αL . EG,α(f) can then be interpreted as
the maximal price an agent would be ready to pay to be in interaction with the
trustee, while E

G,α
(f) can be interpreted as the minimal price an agent would

be ready to accept for being forbidden to interact with the trustee. Algorithm 1
provides an easy way to compute lower and upper expectations.

Algorithm 1 uses the facts that function f values are always rank-ordered
in the same way and that the difference of two consecutive values of f is 1.
Therefore, Equations (5) and (6) reduce to sums of lower and upper probabilities
in this particular case. The adaptation of Algorithm 1 to the second approach
is straightforward, since it consists of replacing lG,αi , uG,αi with lI,si , uI,si . In this
latter case, the resulting interval will be denoted by II,s := [EI,s(f), E

I,s
(f)].

Example 3. The summarising intervals corresponding to interval probabilities of
Examples 1 and 2 are

IG,0.95 = [EG,0.95, E
G,0.95

] = [−0.09, 1.225]

II,2 = [EI,2, E
I,2

] = [0.615, 0.769]

1 Note that any bounded function f can be made positive by adding a suitable constant
to it.



Algorithm 1: Algorithm giving summarising interval
Input: Θ,α
Output: IG,α = [EG,α(f), E

G,α
(f)]

EG,α(f) = 0, E
G,α

(f) = 0 ;
Evaluate θ̂ =

∑2n+1
i=1 θi ;

for i = 1, . . . , 2n+ 1 do
Evaluate lG,αi (Eq.(3));
Evaluate uG,αi (Eq.(3)) ;

for i = 1, . . . , 2n+ 1 do
if i == 1 then

EG,α(f) = EG,α(f) + 1 ;
E
G,α

(f) = E
G,α

(f) + 1 ;
else

EG,α(f) = EG,α(f) + max(
∑2n+1
k=i lG,αk , 1−

∑i−1
k=1 u

G,α
k ) ;

E
G,α

(f) = E
G,α

(f) + min(
∑2n+1
k=i uG,αk , 1−

∑i−1
k=1 l

G,α
k ) ;

EG,α(f) = EG,α(f)− (n+ 1) ;
E
G,α

(f) = E
G,α

(f)− (n+ 1) ;

3.3 Some Properties

Let us now study some of the properties of each summarising intervals. The
first property, satisfied by the two approaches, show that two similar evaluation
profiles (in the sense that empirical frequencies are equal) with different amount
of information (quantity of evaluations) give coherent summarising intervals, in
the sense that the interval obtained with a greater amount of evaluations is
included in the one obtained with less evaluations.

Proposition 1. Let Θ and Θ′ be two counting vectors with Θ′ = βΘ, β > 1.
Then, given a confidence value α or a hyper-parameter s, we have

IG
′,α ⊂ IG,α and II

′,s ⊂ II,s,

with IG
′,α, II

′,s the summarising intervals obtained from Θ′, and II,s, IG,α the
summarising intervals obtained from Θ.

Proof. We will only prove the inclusion for the first approach, the proof for the
second being similar. Θ′ = βΘ implies that for i = 1, . . . , 2n + 1, θ′i = βθi.
By Eq. (3), we have that lG,αi < lG

′,α
i and uG

′,α
i < uG,αi , hence [lG

′,α
i , uG

′,α
i ] ⊂

[lG,αi , uG,αi ]. This means that PG
′,α

L ⊂ PG,αL , and that infinimum and supremum
of expectations over these two sets are such that IG

′,α ⊂ IG,α.

Let us now demonstrate a proposition that only holds for the IDM approach,
and that basically says that better evaluations should provide a better global
score (both higher lower and upper expectations) for the trustee.



Proposition 2. Let Θ and Θ′ be two counting vectors, with θ̂ = θ̂′ and for
which there is an index i such that ∀j ≥ i, θ′j ≥ θj and ∀j < i, θ′j ≤ θj . Then,
given a hyper-paramater s, we have

EI,s ≤ EI
′,s and E

I,s ≤ EI
′,s
, (7)

with EI,s and EI
′,s the lower expectation resp. obtained from Θ and Θ′, and

likewise for the upper expectations.

Proof. Let us consider the initial counting vector Θ. As θ̂ = θ̂′, going from Θ to
Θ′ can be done by transferring some evaluations, e.g. of index k < i to better
ones e.g. of index i ≥ m one at a time. Therefore, all we have to do is to consider
the counting vector Θ′′ such that θ′′k = θk − 1, θ′′m = θm + 1 and θ′′i = θi for all
other indices, and to prove that Eq. (7) holds in this case.

By Eq (4), we have that lI
′′,s
i = lI,si and uI

′′,s
i = uI,si for any i different of

k,m. We also have that lI
′′,s
k ≤ lI,sk , uI

′′,s
k ≤ uI,sk , lI

′′,s
m ≥ lI,sm and uI

′′,s
m ≥ uI,sm .

Now, concentrating on the lower expectation and using Eq (5), to prove Eq. (7),
we need to prove

∑N
i=1 P (A(i)) ≤

∑N
i=1 P

′′(A(i)), with P and P ′′ the lower
probabilities induced by the probability intervals obtained from Θ and Θ′′. The
two sums read:

N∑
i=1

P (A(i)) =

N∑
i=1

max{
2n+1∑
j=i

lj , 1−
i−1∑
j=1

uj}

N∑
i=1

P ′′(A(i)) =

N∑
i=1

max{
2n+1∑
j=i

l′′j , 1−
i−1∑
j=1

u′′j }

For i ≤ k or i > m, we have max{
∑2n+1
j=i lj , 1−

∑i−1
j=1 uj} = max{

∑2n+1
j=i l′′j , 1−∑i−1

j=1 u
′′
j }, because l

I,s
k − l

I′′,s
k = lI

′′,s
m − lI,sm (i ≤ k) and uI′′,sm −uI,sm = uI,sk −u

I′′,s
k

(i < m). Now, consider the case where k < i ≤ m, we do have lI
′′,s
m ≥ lI,sm

and uI,sk ≥ uI
′′,s
k , therefore max{

∑2n+1
j=i lj , 1 −

∑i−1
j=1 uj} ≤ max{

∑2n+1
j=i l′′j , 1 −∑i−1

j=1 u
′′
j }. Hence, we have EI,s ≤ EI

′,s. The proof concerning the upper expec-
tation is similar.

As shows the next example, the approach using Goodman’s confidence inter-
vals does not satisfy this property, that may seem intuitive at first sight. This
is mainly due to the fact that differences between upper and lower probability
bounds ui, li derived from Goodman’s confidence intervals depend on the num-
ber of evaluations θi, i.e. more evaluations θi will provide a narrower interval
[li, ui]. This means that the model precision depends on how evaluations are
distributed, while it can be argued that it is not the case for the IDM (where
differences ui − li depend solely on parameter s and θ̂).



Example 4. Consider a space X = {−2,−1, 0, 1, 2} containing 5 possible values
and the two following counting vectors Θ = (0, 0, 10, 0, 0) and Θ′ = (0, 0, 8, 2, 0).
With a confidence degree α = 0.95, we have

IG,0.95 = [−0.8, 0.8] IG
′,0.95 = [−0.92, 1]

From the example, it can be seen that Goodman’s intervals somewhat reflect
the dispersion of evaluations, i.e. the model imprecision depends on how con-
centrated evaluations are. Indeed, more dispersed evaluations may improve the
upper score, while providing a more imprecise interval [E,E] (as in Example 4).

It would be interesting to relate this kind of behaviour (interval imprecision
increase) with some dispersion measures of the empirical frequencies distribu-
tions (e.g., entropy, Gini index, . . . ). Also, it could be checked whether Good-
man’s intervals approach satisfy a weaker condition than Proposition 2, namely
that for two counting vectors Θ and Θ′ satisfying condition of Proposition 2 and
a given confidence value α, we have E

G,α ≤ EG
′,α

.
These two properties may be seen as monotonic properties w.r.t. evaluation

quantity and evaluation score, respectively. Other properties, such as adaptation
of the ones proposed by Ben-Naim and Prade [3], should be investigated in
further studies.

3.4 Towards fuzzy evaluations

In this subsection, we relax some of the previous assumptions (i.e. fixed confi-
dence level α and parameter s) and propose some methods to obtain a fuzzy
interval as the evaluation summary rather than a crisp interval.

Recall that a fuzzy set µ is a mapping µ : X → [0, 1] from X (here, the
interval [−n, n]) to the unit interval, where µ(x) is called the membership value
of x. The β-cut of a fuzzy set µ is the set Aβ := {x ∈ X |µ(x) ≥ β}.

First approach: Goodman’s intervals Extending the first approach to ob-
tain a fuzzy representation is straightforward, since the formalism of fuzzy sets is
particularly well suited to the representation of confidence intervals [9]. Indeed,
a β-cut can be interpreted as a confidence set or interval with a confidence level
1− β.

An interval IG,α = [EG,α, E
G,α

] for a given α can therefore be directly asso-
ciated to the (1− α)-cut of a fuzzy set giving a global evaluation of the trustee
trustworthiness. The resulting fuzzy set µG is such that, for any α ∈ (0, 1]

µG(EG,α) = 1− α µG(E
G,α

) = 1− α.

Example 5. Consider the counting vector Θ = (0, 9, 13, 11, 17) provided in Ex-
ample 1. Figure 1 illustrates the obtained summarising fuzzy interval. The rep-
resentation shows that the trustee has a positive score, centred around 0.7. Only
intervals given by conservative confidence values (above 0.9) provide summaris-
ing intervals that include negative values.
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Fig. 1. Fuzzy evaluation with Goodman’s intervals (Example 5).



Second approach: IDM intervals How to build a fuzzy evaluation by using
the IDM approach is less straightforward. An idea ( the one we take here) is to
let the parameter s vary within some bounds [0, s], and to build a fuzzy set µI
such that, for any s ∈ [0, s],

µI(EI,s) =
s− s
s

µI(E
I,s

) =
s− s
s

.

This is indeed a fuzzy set, since for two s, s′ ∈ [0, s] such that s ≤ s′, we do
have [EI,s, E

I,s
] ⊂ [EI,s

′
, E

I,s′

]. However, the interpretation in terms of confi-
dence intervals is in this case less clear, and the final fuzzy global evaluation is
highly dependent of the value s (the lower s, the more precise will be the fuzzy
set). Hence this extension is more ad hoc, as well as questionable.
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Fig. 2. Fuzzy evaluation with IDM intervals (Example 6).

Example 6. Consider the counting vector Θ = (0, 9, 13, 11, 17) provided in Ex-
ample 1 and a value s = 50. Figure 2 illustrates the obtained summarising fuzzy
interval. Although the fuzzy set is centred around the same values as in Figure 1,
its shape is quite different. Indeed, in this case the imprecision growth decreases
as α-value decreases, while in the case of Goodman’s intervals the imprecision
growth increases as α-value increases.



Note that, since Propositions 1 and 2 are valid for any confidence level or
hyper-parameter values, their conclusions can directly be extended to the pro-
posed fuzzy extensions.

4 Conclusion

In this paper, we have proposed and compared two imprecise probabilistic models
to evaluate the trustworthiness of an agent (the trustee) from previous evalu-
ations made by other agents. The two models are based on the estimation of
lower and upper expectations induced by probability intervals, themselves in-
duced by the counting vector of evaluations. In the first model, these probability
intervals are given by Goodman’s statistical confidence intervals, while in the
second, probability intervals are provided by the (popular) Imprecise Dirichlet
model. Lower and upper expectations summarise the counting vector of evalu-
ations in a richer way than single point values, since the interval they provide
also reflects the dispersion of evaluations and their quantity. Both methods are
computationally efficient, and we have proposed for both of them extensions to
fuzzy evaluations.

From our study, it appears that the two approaches are at odds. Indeed,
Goodman’s intervals approach does not satisfy some monotonic properties (Prop-
erty 2) that intuitively one may wish to satisfy, while the IDM approach does.
However, it could be argued that the IDM probability intervals and the induced
summarising interval only takes account of the quantity of evaluations, as the
imprecision in both of them only depends on the number of evaluations (once s
is fixed). On the contrary, Goodman’s probability intervals imprecision and the
induced summarising interval are also influenced by the evaluations distribution
across space X . Goodman’s confidence intervals also have a clear statistical in-
terpretation, allowing for a very natural extension of the summarising process
to fuzzy intervals. Such an extension, although possible, is more tricky to inter-
pret in the case of the IDM, for which the choice of s and its meaning are still
discussed among researchers.

In conclusion, our preference would be to let go of Property 2 and to use
Goodman’s intervals, since they account for evaluations dispersion in X and
have a clear statistical interpretation. However, if one considers that Property 2
have to be satisfied, then the IDM approach should be used.

A possible improvement of the current approach would be to integrate ad-
ditional features to the evaluations or the way they are taken into account. For
instance, it could be desirable to allow for imprecise evaluations or to consider
the time at which evaluations were given (recent evaluations being more reliable
than old ones). However, such additional information would also mean that the
counting vector Θ would no longer be sufficient "statistic" to provide a summary.

Another interesting topic to explore is how trust information coming from
past evaluations can be combined with other trust information sources (e.g.,
direct interactions).
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