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Abstract

Given an imprecise probabilistic model over a con-
tinuous space, computing lower (upper) expectations
is often computationally hard to achieve, even in
simple cases. Building tractable methods to do so
is thus a crucial point in applications. In this pa-
per, we concentrate on p-boxes (a simple and popu-
lar model), and on lower expectations computed over
non-monotone functions. For various particular cases,
we propose tractable methods to compute approxima-
tions or exact values of these lower expectations. We
found interesting to compare two approaches: the first
using general linear programming, and the second us-
ing the fact that p-boxes are special cases of random
sets. We underline the complementarity of both ap-
proaches, as well as the differences.

Keywords. P-boxes, Random sets, Linear program-
ming, Lower/upper expectation, Optimization

1 Introduction

When dealing with scarce information or with inde-
terminate beliefs, imprecise probability theory [11],
together with lower previsions (expectations), offer
a very appealing framework, for its mathematical
soundness as well as for its well-defined behavioral
interpretation. Nevertheless, computing lower previ-
sions by means of the so-called natural extension when
beliefs are modeled by a set of precise probability dis-
tributions on a continuous space (here, the reals) is
often a very hard problem. Thus, building tractable
methods to compute good approximations or exact
values of such lower previsions is essential in applica-
tions.

First, let us note that the methods proposed here are
"interpretation"-independent, and are valid both in
Walley’s behavioral theory (where the existence of an
"ideal" precise distribution is not generally assumed)
as well as in a more classical Bayesian sensitivity

analysis framework (where not enough information is
available to precisely know the "true" probability dis-
tribution). Thus, although interpretation issue is very
important, we won’t deal with it in the sequel, where
an "interpretation-free" vocabulary is adopted.

In this paper, we concentrate on the case when proba-
bilistic models are p-boxes and when the function (i.e.
gamble in Walley’s theory) over which is computed
the lower expectation is non-monotone and whose be-
havior is (partially) known . In other words, we pro-
pose efficient algorithms for computing lower and up-
per expectations of non-monotone functions of various
types under the condition that the given uncertainty
model is p-box.

P-boxes are one of the simplest and most popular
model of sets of probability distributions, directly ex-
tending cumulative distributions used in the precise
case. Although we admit that the poor expressive
power of p-boxes (a price to pay for the simplicity of
the model) is a limitation, we believe that they can
be a good first approximation that allows for more
efficient computations, and that if a decision can be
taken using them, there is no reason to use a more
complex model. Moreover, we should be able to ef-
ficiently compute with simple models before thinking
of stepping towards more complex ones.

Although we will briefly deal with the trivial case of
monotone functions, they are, as well as functions
whose behavior is completely unknown, two extreme
cases that will seldom be encountered in real applica-
tions (at least in "human sized" models). In most real
applications, the function of interest is non-monotone
but some of its characteristics are known.

Methods developed in the paper are based on two dif-
ferent approaches, and we found interesting to em-
phasize similarities and differences between these ap-
proaches, as well as how one approach can help the
other: the first is based on the fact that natural exten-
sion can be viewed as a linear programming problem,



while the second use the fact that a p-box is a partic-
ular case of random set.

The next section states the problem we’re going to
deal with. Section 3 then explores how to com-
pute both the unconditional and conditional interval-
valued expectations of a function of one variable hav-
ing one maximum. The multivariate case when the
function of a set of variables has one maximum is then
explored in section 4 . Finally, section 5 illustrates
how results could be extended to more complicated
functions.

2 Problem statement

We assume that the information about a (real) vari-
able X is (or can be) represented by some (continu-
ous) lower F and upper F probability distributions
defining the p-box [F , F ] [5]. Lower F and upper F
thus define a set of precise distributions s.t.

F (x) ≤ F (x) ≤ F (x), ∀x ∈ R. (1)

Given a function h(X), lower (E) and upper (E) ex-
pectations over [F , F ] of h(X) can be computed by
means of a procedure called natural extension [11, 12],
which corresponds to the following equations:

E(h) = inf
F≤F≤F

∫

R

h(x)dF , E(h) = sup
F≤F≤F

∫

R

h(x)dF (2)

and computing the lower (upper) expectation can be
seen as finding the "optimal" distribution F reaching
the infimum (supremum) in equations (2). We now
detail the two generic approaches used throughout the
paper.

2.1 Linear programming view

Numerically solving the above problem can be done
by approximating the probability distribution func-
tion F by a set of N points F (xi), i = 1, ..., N , and by
translating equations (2) into the corresponding lin-
ear programming problem with N optimization vari-
ables and where constraints correspond to equation
(1). Those linear programming problems are of the
form

E
∗(h)=inf

N∑

k=1

h(xk)zk or E
∗
(h)=sup

N∑

k=1

h(xk)zk

subject to

zi ≥ 0, i = 1, ..., N,

N∑

k=1

zk = 1,

i∑

k=1

zk ≤ F (xi),

i∑

k=1

zk ≥ F (xi), i = 1, ..., N.
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Figure 1: P-box as random set, illustration

where the zk are the optimization variables, and ob-
jective function E

∗(h) (E
∗
(h)) is an approximation of

the lower (upper) expectation. This way of deter-
mining the lower and upper expectations meets some
computation difficulties when the value of N is rather
large. Indeed, the optimization problems have N vari-
ables and 3N + 1 constraints. On the other hand, by
taking a small value of N , we take the risk of obtain-
ing bad approximations of the exact value.

2.2 Random set view

Now that we have given a global sketch of the linear
programming approach, we can detail the one using
random sets. Formally, a random set is a mapping
Γ from a probability space to the power set ℘(X)
of another space X, also called a multi-valued map-
ping. This mapping induces lower and upper proba-
bilities on X [3]. Here, we shall consider the probabil-
ity space [0, 1] equipped with Lebesgue measure, and
space ℘(X) will be the measurable subsets of the real
line R.

Given the (uniformly continuous) p-box [F , F ], we
will note Aγ = [a∗γ , a∗

γ ] the set s.t.

a∗γ := sup{x ∈ [ainf , asup] : F (x) < γ} = F
−1

(γ),

a∗
γ := inf{x ∈ [ainf , asup] : F (x) > γ} = F−1(γ),

By extending results from [7, 5, 4] to the continuous
real line, we can conclude that the p-box [F , F ] is
equivalent to the continuous random set with a uni-
form mass density on [0, 1] and a mapping (see fig-
ure 1) s.t.

Γ(γ) = Aγ = [a∗γ , a∗
γ ] γ ∈ [0, 1].

The interest of this mapping is that it allows us to
rewrite equations (2) and the Choquet integral in a



"Lebesgue" type integral, namely

E(h) =

∫ 1

0

inf
x∈Aγ

h(x) dγ, (3)

E(h) =

∫ 1

0

sup
x∈Aγ

h(x) dγ. (4)

Finding analytical solutions of such integrals is not
easy in the general case, but approximations (either
inner or outer) can be more or less easy to compute
by discretizing the p-box on a finite number of levels
γi, the main difficulty in the general case being to find
the infimum or supremum of h(X) for each discretized
level. As in the case of linear programming, choosing
too few levels γi or using poor heuristics can lead to
bad approximations.

In both cases, it is obvious that the optimal probabil-
ity distribution F providing the minimum (maximum)
expectation of h depends on the form of the function
h. If this form follows some typical cases, efficient so-
lutions can be found to compute lower (upper) expec-
tations. The simplest examples (for which solutions
are well known) of such typical cases are monotone
functions.

2.3 The simple case of monotone functions

Let h be a monotone function that is non-decreasing
(non-increasing) in R, then we have [12]:

E(h) =

∫

R

h(x)dF

(
E(h) =

∫

R

h(x)dF

)
, (5)

E(h) =

∫

R

h(x)dF

(
E(h) =

∫

R

h(x)dF

)
, (6)

and we see from (5)-(6) that lower and upper expec-
tations are completely determined by bounding dis-
tributions F and F . Using equations (3)-(4), we get
the following formulas

E(h) =

∫ 1

0

h(a∗γ)dγ

(
E(h) =

∫ 1

0

h(a∗
γ)dγ

)
, (7)

E(h) =

∫ 1

0

h(a∗
γ)dγ

(
E(h) =

∫ 1

0

h(a∗γ)dγ

)
, (8)

which are the counterparts of equations (5)-(6). Here,
expectations are totally determined by extreme values
of the mappings. When h is non-monotone, equations
(5)-(8) provide inner approximations of E(h),E(h).

We then explore the cases where our knowledge of h
can greatly improve those approximations (and even
make them become exact values) without too much
extra computational cost.

3 Function with one maximum -
univariate case

In this section, we study the case where the function
h has one maximum at point a, i.e. h is increasing
(decreasing) in (−∞, a] ([a,∞)). The case of h having
one minimum easily follows.

3.1 Unconditional expectations

Proposition 1. If the function h has one maximum
at point a ∈ R, then the upper and lower expectations
of h(X) on [F , F ] are

E(h)=

a∫

−∞

h(x)dF +h(a)
[
F (a) − F (a)

]
+

∞∫

a

h(x)dF , (9)

E(h) =




F
−1

(α)∫

−∞

h(x)dF +

∞∫

F−1(α)

h(x)dF


 , (10)

or, equivalently

E(h)=

F (a)∫

0

h(a∗
γ
)dγ+[F (a) − F (a)]h(a)+

1∫

F (a)

h(a
∗γ

)dγ (11)

E(h) =

α∫

0

h(a∗γ)dγ +

1∫

α

h(a∗
γ)dγ, (12)

where α is one of the solution of the equation

h
(
F

−1
(α)

)
= h

(
F−1(α)

)
. (13)

Proof using linear programming. We assume
that the function h (x) is differentiable in R and
has a finite value by x → ∞. The lower and upper
cumulative probability functions F and F are also
differentiable. Then the following primal and dual
optimization problems can be written for computing
the lower expectation of the function h:

Primal problem:

Minimize v =
∫ ∞

−∞
h (x) ρ (x) dx

subject to
ρ (x) ≥ 0,

∫ ∞

−∞
ρ (x) dx = 1,

−
∫ x

−∞
ρ (x) dx ≥ −F (x) ,∫ x

−∞
ρ (x) dx ≥ F (x) .

Dual problem:

Max. w = c0 +
∫ ∞

−∞

(
−c (t) F (t) + d (t) F (t)

)
dt

subject to
c0 +

∫ ∞

x
(−c (t) + d (t)) dt ≤ h (x) ,c0 ∈ R,

c (x) ≥ 0, d (x) ≥ 0.



The proof that equations (9)-(10) and (13) are right
then follows in three main steps:

1. We propose a feasible solution of the primal prob-
lem.

2. We then consider the feasible solution of the dual
problem corresponding to the one proposed for
the primal problem.

3. We show that the two solutions coincide and,
therefore, according to the basic duality theorem
of linear programming, these solutions are opti-
mal ones.

First, we consider the primal problem. Let a′ and a′′

be real values. The function

ρ (x) =





dF (x) /dx, x < a′

0, a′ ≤ x ≤ a′′

dF (x) /dx, a′′ < x

is a feasible solution to the primal problem if the fol-
lowing conditions are respected:

∫ ∞

−∞

ρ (x) dx = 1,

which, given the above solution, can be rewritten

∫ a′

−∞

dF +

∫ ∞

a′′

dF = 1,

which is equivalent to the equality

F (a′) = F (a′′) . (14)

We now interest ourselves in the dual problem. Let
us first consider the sole constraint

c0 +

∫ ∞

x

(−c (t) + d (t)) dt ≤ h (x) , (15)

which is the equivalent of the primal constraint
ρ (x) ≥ 0. We then consider the following feasible
solution to the dual problem as c0 = h (∞),

c (x) =

{
h′ (x) , x < a′

0, x ≥ a′ d (x) =

{
0, x < a′′

−h′ (x) , x ≥ a′′ .

The inequalities c (x) ≥ 0 and d (x) ≥ 0 are valid
provided we have the inequalities a′ ≤ a ≤ a′′ (i.e.
interval [a′, a′′] encompasses maximum of h). By inte-
grating c (x) and d (x), we get the increasing function

C (x) = −

∫ ∞

x

c (t) dt =

{
h (x) − h (a′) , x < a′

0, x ≥ a′

and the decreasing function

D (x) =

∫ ∞

x

d (t) dt =

{
h (a′′) − h (∞) , x < a′′

h (x) − h (∞) , x ≥ a′′ .

Let us rewrite condition (15) as follows:

c0 + C (x) + D (x) ≤ h (x) . (16)

If x < a′, equation (16) reads

c0 + h (x) − h (a′) + h (a′′) − h (∞) = h (x) .

Hence
h (a′′) = h (a′) . (17)

If a′ < x < a′′, we have c0 + h (a′′) − h (∞) ≤
h (x) which means that for all x ∈ (a′, a′′) we have
h (a′′) (= h (a′)) ≤ h (x) (i.e. h (a′′) and a′ are
the minimal values of the function h (x) in interval
x ∈ (a′, a′′).) If x ≥ a′′, then we get the trivial equal-
ity c0 + h (x) − h (∞) = h (x). The two proposed
solutions are valid iff equation (14) is valid for the pri-
mal problem and equation (17) is valid for the dual
problem. To show that they are actually valid, let us
consider the function

ϕ (α) = h
(
F

−1
(α)

)
− h

(
F−1 (α)

)
,

which, being a substraction of two continuous func-
tions (by supposition), is continuous. Since the func-
tion h has its maximum at point x = a, then, by
taking α = F (a), we get the inequality

ϕ (F (a)) = h
(
F

−1
(F (a))

)
− h (a) ≤ 0

and, by taking α = F (a), we get the inequality

ϕ
(
F (a)

)
= h (a) − h

(
F−1

(
F (a)

))
≥ 0.

Consequently, there exists α in the interval(
F (a) , F (a)

)
such that ϕ (α) = 0 (since ϕ is con-

tinuous). Therefore, there exist a′ = F
−1

(α) and
a′′ = F−1 (α) (hence, equality (14) holds) such that
equality h (a′) = h (a′′) in (17) is valid. We find the
values of the objective functions

vmin =

∫ a′

0

h (x) dF +

∫ ∞

a′′

h (x) dF ,

wmax = c0 +

∫ ∞

0

(
−c (t) F (t) + d (t) F (t)

)
dt.

and, by using integration by parts together with equa-
tions (14)-(17), we can show that equality wmax =
vmin holds, with α the particular solution of equa-
tion (13) for which optimum is reached, as was to be
proved.

Proof using random sets. Let us now consider
equations (4)-(3). Looking first at equation (4), we
see that before γ = F (a), the supremum of h on Aγ is



h(a∗
γ), since h is increasing between [∞, a]. Between

γ = F (a) and γ = F (a), the supremum of h on Aγ is
f(a). After γ = F (a), we can make the same reason-
ing as for the increasing part of h (except that it is
now decreasing). Finally, this gives us the following
formula:

E(h) =

F (a)∫

0

h(a∗
γ)dγ +

F (a)∫

F (a)

h(a)dγ +

1∫

F (a)

h(a∗γ)dγ (18)

which is equivalent to (11). Let us now turn to the
lower expectation. Before γ = F (a) and after γ =
F (a), finding the infinimum is again not a problem (it
is respectively h(a∗γ) and h(a∗

γ)). Between γ = F (a)

and γ = F (a), since we know that h is increasing
before x = a and decreasing after, infinimum is either
h(a∗γ) or h(a∗

γ). This gives us equation

Eh=
F (a)

R

0

h(a∗γ)dγ+
F (a)

R

F (a)

min(h(a∗γ),h(a∗
γ))dγ+

1
R

F (a)

h(a∗
γ)dγ (19)

and if we use equations (14),(17) as in the first proof
(reasoning used in the first proof to show that they
have a solution is general, and thus applicable here),

we know that there is a level α s.t. h(F
−1

(α)) =
h(F−1(α)), and for which equation (19) reduce to
equation (13).

Solutions for a function h having a minimum di-
rectly follow, due to the duality between lower and
upper expectations [12] (i.e. E(−h) = −E(h) and
E(−h) = −E(h)). Of course, both proofs lead to
similar formulas and, in applications, would lead to
the same lower and upper expectations. Neverthe-
less, each view suggests a different way to solve the
problem or to approximate the solution.

The proof using linear programming and the associ-
ated formulas suggest a more analytical and explicit
solution, where we have to find the level α satisfying
equation (14). If an analytical solution is not avail-
able, then the solution is generally approximated by
scanning a larger or smaller range of possible values
for α(see [10] for an example). On the other side, the
proof is shorter in the case of random set, but the
presence of a level α is hardly visible at first sight,
and analytical results are more difficult to derive.
Compared to the linear programming view, equations
(11),(12),(19) suggest numerical methods based on a
discretization of the levels γ rather than a heuristic
search of the level α satisfying equation (14). Let us
note that in the worst case, two evaluations are needed
at each of the discretized levels (using equation (19)).

If the function h is symmetric about a, i.e., the equal-
ity h(a − x) = h(a + x) is valid for all x ∈ R, then

the value of α in (13) does not depend on h and is
determined as

a − F
−1

(α) = F−1(α) − a.

Note that expressions (5),(6) can be obtained from
(9),(10) by taking a → ∞.

3.2 Conditional expectations

Suppose that we observe an event B = [b0, b1]. Then
the lower and upper conditional expectations under
condition of B can be determined as follows:

E(h|B) = inf
F≤F≤F

∫
R

h(x)IB(x)dF∫
R

IB(x)dF
,

E(h|B) = sup
F≤F≤F

∫
R

h(x)IB(x)dF∫
R

IB(x)dF
.

Generally speaking, the above problems can numeri-
cally be solved by approximating the probability dis-
tribution function F by a set of N points F (xi),
i = 1, ..., N , and by writing linear-fractional optimiza-
tion problems and then linear programming problems.
Problems mentioned for the unconditional case can
again occur. Figure 2 illustrates a potential optimal
distribution F for which upper conditional expecta-
tion is reached (under the condition B = [1, 8]) when
h has one maximum (which value is 5 in figure 2).

Proposition 2. If the function h has one maximum
at point a ∈ R, then the upper and lower conditional
expectations of h(X) on [F , F ] after observing the
event B are

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Ψ(α, β),

E(h|B) = inf
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Φ(α, β),

Ψ(α, β) = I(α < F−1(a))

∫ a

F−1(α)

h(x)dF

+I(β > F
−1

(a))

∫ F
−1

(β)

a

h(x)dF

+ h(a)
(
min(F (a), β) − max(F (a), α)

)

=

∫ β

α

sup
x∈Aγ

h(x)dγ.

Φ(α, β) = h(b0)
(
F (b0) − α

)
+

∫ F
−1

(ε)

b0

h(x)dF

+ h(b1) (β − F (b1)) +

∫ b1

F−1(ε)

h(x)dF

=

∫ β

α

inf
x∈Aγ

h(x)dγ.



Figure 2: Optimal distribution (thick) for computing
upper conditional expectation on B = [1, 8]

Here I(a < b) is the indicator function taking 1 if
a < b and 0 if a ≥ b; ε is one of the roots of the
following equation:

h
(
F

−1
(ε)

)
= h

(
F−1(ε)

)
. (20)

General proof. We consider only upper expecta-
tion. We do not know how the optimal distribution
function behaves outside the interval B. Therefore,
we suppose that the value of the optimal distribution
function at point b0 is F (b0) = α ∈ [F (b0), F (b0)] and
its value at point b1 is F (b1) = β ∈ [F (b1), F (b1)] (see
Fig. 2). Then there holds

∫

R

IB(x)dF (x) = β − α.

Hence, we can write

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

F≤F≤F

1

β − α

∫

R

h(x)IB(x)dF (x)

= sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α




sup
F≤F≤F
F (b0)=α
F (b1)=β

∫

R

h(x)IB(x)dF (x)




= sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α

∫ β

α

sup
x∈Aγ

h(x)dγ. (21)

Here Aγ = B∩ [F−1(γ), F
−1

(γ)]. By using the results
obtained for the unconditional upper expectation, we
can see that the integrand is equal to Ψ(α, β). The
lower expectation is similarly proved, and conditional
expectations when h has one minimum immediately
follow.

Equation (21) shows that, as value β − α increases,
so do the numerator and denominator, thus playing

opposite role in the evolution of the objective func-
tion. Hence, computing the upper (lower) conditional
expectation consists in finding the values β and α s.t.
any increase (decrease) in the value β − α is greater
(lower) than the corresponding increase (decrease) in
Ψ(α, β).

A crude algorithm to approximate the solution would
be to start from the largest (tightest) interval [α, β]
and then to gradually shrink (enlarge) it, evaluat-
ing each time equation (21) and retaining the high-
est obtained value (let us note that we can have
F (b0) ≥ F (b1), thus the tightest interval can be void).

Another interesting point to note is that the proof
takes advantage of both views, since the idea to use
levels α and β comes from fractional linear program-
ming, while the final equation (21) can be elegantly
formulated by using the random set view.

4 Function with one maximum -
multivariate case

Now, let h be a function from R
2 → R which depends

on two variables X and Y . The uncertainty model
becomes the following bivariate p-box:

F (x, y) ≤ F (x, y) ≤ F (x, y), ∀(x, y) ∈ R
2.

Again, we assume that h has one global maximum
at point (x0, y0) and that ∀z, ∂h(x, z)/∂x = 0 and
∂h(z, y)/∂y = 0 respectively have solutions at points
x = x0 and y = y0, making the task to find infinima
and suprema easier in further equations . In the next
sections, we explore how we would solve the problem,
under some common independence hypothesis exist-
ing in the framework of imprecise probabilities [2]. In
this paper, we only provide an outline, giving general
ideas and underlining the most interesting points.

In the sequel, we will consider, for the marginal ran-
dom set of variable Y , the sets Bκ = [b∗κ, b∗κ] s.t.

b∗κ := sup{y ∈ [binf , bsup] : F (y) < κ} = F
−1

(κ),

b∗κ := inf{y ∈ [binf , bsup] : F (y) > κ} = F−1(κ).

Moreover, following Smets [9], we will note fM
X

and fM
Y the basic belief densities corresponding to

the continuous random sets of [F , F ]X ,[F , F ]Y when
needed.

4.1 Strong Independence

In the case of strong independence, we can write

E(h) = inf
F 1≤F1≤F 1

inf
F 2≤F2≤F 2

∫

R

∫

R

h(x, y)dF1dF2,



E(h) = sup
F 1≤F1≤F 1

sup
F 2≤F2≤F 2

∫

R

∫

R

h(x, y)dF1dF2.

The simplest case is when the function h can be rep-
resented as h(X,Y ) = h1(X)h2(Y ). Then E(h) =
E(h1) · E(h2) and E(h) = E(h1) · E(h2). However, we
consider a more complex case. Let us fix the second
variable Y at point z. Denote

ξ(z) =

∫

R

h(x, z)dF1(x).

Then we have

E(h(X,Y )) =

∫

R

ξ(z)dF2(z).

Let us fix variable Y to value z. Given our particular
h(X,Y ) and Proposition 1, we have

E(h(X, z)) = sup
F 1≤F1≤F 1

ξ(z)

= h(x0, z)
[
F 1(x0) − F 1(x0)

]
+

∫ x0

−∞

h(x, z)dF 1 +

∫ ∞

x0

h(x, z)dF 1. (22)

Given the assumption we’ve made on h(X,Y ) behav-
ior, function ξ(z) has a maximum at point z = y0 and
is monotone in intervals (−∞, z0) and (z0,∞), what-
ever the value of x. This implies that the optimal
distribution F2 is of the form considered in Proposi-
tion 1. Moreover, the following inequality

sup
F 2≤F2≤F 2

∫

R

ξ(z)dF2(z) ≥ sup
F 2≤F2≤F 2

∫

R

ξ̂(z)dF2(z)

holds if ξ(z) ≥ ξ̂(z). Then it follows from the above
and from the form of the optimal distribution F2 de-
termined in Proposition 1 that

E(h(X,Y )) = sup
F 2≤F2≤F 2

∫

R

E(h(X, z))dF2(z)

= sup ξ(y0)
[
F 2(y0) − F 2(y0)

]
+

∫ y0

−∞

sup ξ(z)dF 2(z) +

∫ ∞

y0

sup ξ(z)dF 2(z)

and sup ξ(z) is given by equation (22). Upper expec-
tation under strong independence can then be found
in an almost explicit form. The same is not true for
the lower expectation, since, relying on the first proof
of Proposition 1, inf ξ(z) is obtained in this case by
solving the equation

h(F
−1

1 (α), z) = h(F−1
1 (α), z).

where the root α obviously depends on z. By denoting
this dependency as αz, we can nevertheless derive the

following formula

E(h(X,Y )) = inf
F 2≤F2≤F 2

∫

R

E(h(X, z))dF2(z)

=

∫ F
−1
2 (β)

−∞

∫ F
−1
1 (αz)

−∞

h(x, z)dF 1dF 2

+

∫ F
−1
2 (β)

−∞

∫ ∞

F−1
1 (αz)

h(x, z)dF 1dF 2

+

∫ ∞

F−1
2 (β)

∫ F
−1
1 (αz)

−∞

h(x, z)dF 1dF 2

+

∫ ∞

F−1
2 (β)

∫ ∞

F−1
1 (αz)

h(x, z)dF 1dF 2.

where β is a root of the equation

E(h(X,F−1
2 (β))) = E(h(X,F

−1

2 (β)).

and only an approximation of such a lower bound can
be found.

For the strong independence case, results rely heav-
ily on the linear programming view and allow us to
derive nice analytical formulas. Although we could
set the problem in a random set framework, it would
lead to numerical solutions less efficient than the one
presented here (difficult problems already arise when
computing lower and upper probabilities [6]).

Next cases emphasize the random set view, since this
view makes solutions easier to state (especially, as
could be expected, in the random set independence
case).

4.2 Random set Independence

In the case of random set independence, lower and
upper expectations can be computed by the following
formulas:

E(h) =

∫ 1

0

∫ 1

0

inf
(x,y)∈[Bκ×Aγ ]

h(x, y)dκdγ,

E(h) =

∫ 1

0

∫ 1

0

sup
(x,y)∈[Bκ×Aγ ]

h(x, y)dκdγ,

for which we can get a numerical approximation as
close as we want to the exact value, by discretizing
each integral. Moreover, in our particular case, eval-
uating inf h(x, y) or suph(x, y) is easy.

Indeed, if h is as stated above, finding the supremum
or infimum of h on [Bκ × Aγ ] will often require only
one computation: when b∗κ ≤ y0 and a∗

κ ≤ x0, the
supremum and infimum values are respectively on the
vertices (b∗κ, a∗

κ) and (b∗κ, a∗γ) of the square. when
b∗κ ≤ y0 ≤ b∗κ and a∗

γ ≤ x0, the supremum is at point



(a∗
γ , y0) and the infimum is either at point (a∗γ , b∗κ) or

(a∗γ , b∗κ). In the case where the square contains point
(x0, y0), this point is the supremum and the infimum
is on one of the four vertices of the square. All other
situations easily follow.

From a numerical standpoint, we can note that assum-
ing random set independence is equivalent to assum-
ing independence in a Monte-Carlo sampling scheme
where each sample consists of two randomly chosen
intervals Aγ and Bκ.

4.3 Unknown Interaction

Since p-boxes are special case of random sets, we can
follow Fetz and Oberguggenberger [6], who show that
considering unknown interaction when marginals are
random sets is equivalent to consider the set of all pos-
sible joint random sets having the latter for marginals,
and using results from [9] (where the extension of
continuous belief functions to n-dimensional case is
briefly sketched), computing lower (upper) expecta-
tion can be expressed as follows:

E(h) = inf
fM

XY ∈JXY

∫

x1

∫

x2

∫

y1

∫

y2

inf
x∈[x1,x2]
y∈[y1,y2]

h(x, y)DfM
XY ,

E(h) = sup
fM

XY ∈JXY

∫

x1

∫

x2

∫

y1

∫

y2

sup
x∈[x1,x2]
y∈[y1,y2]

h(x, y)DfM
XY ,

with

DfM
XY = fM

XY (x1, x2, y1, y2)dx1dx2dy1dy2,

where JXY is the set of all possible joint basic belief
densities fM

XY over R
4 which have fM

X and fM
Y as their

marginals.

Although the above equations are nice ways to for-
mulate the problem, solving them analytically will be
impossible in most cases. Again, the result can be ap-
proximated by approximating each p-box by a finite
random set.

For instance, let us consider the two random sets
Γγ ,Γκ approximating the p-boxes [F , F ]X ,[F , F ]Y
with sets Aγi

, Bκj
, where i, j = 1, . . . , n and where all

sets have equal weights (i.e. γi − γi−1 = κj − κj−1 =
1/n ∀ i, j). The problem of approximating lower ex-
pectation then comes down to finding

E
∗(h) = inf

Γγ,κ∈Γ∗
γ,κ

∑
inf

x∈Aγi
y∈Bκj

h(x, y)mΓγ,κ
(Aγi

× Bκj
)

subject to

n∑

j=1

mΓγ,κ
(Aγi

× Bκj
) = mΓγ

(Aγi
),

n∑

i=1

mΓγ,κ
(Aγi

× Bκj
) = mΓγ

(Bκj
),

where Γ∗
γ,κ is the set of joint random sets having

Γγ ,Γκ for marginals, and mΓγ,κ
(Aγi

×Bκj
) the mass

attached to the focal element Aγi
×Bκj

. Approxima-
tion of upper expectation can be derived in a similar
way (i.e. replacing the inf by sup).

Although solving the above equations is not easy, we
can hope to find efficient solutions, provided we can
easily evaluate inf h(x, y) on elements of the Carte-
sian product (we have seen that it is the case here) .
Also, this method can be seen as an extension of some
existing methods (see [13, 8]) to functions h(x) more
general than indicator functions of events. Hence, we
could extend some previous results concerning indi-
cators functions to integrate some information about
dependencies [1]. Another interesting thing to point
out is that approximating the result in the case of
unknown interaction naturally leads to a linear pro-
gramming problem.

Methods given for unknown interaction and random
set independence are applicable to all random sets
(and only to random sets, which is a limitation com-
pared to general linear programming), and consider-
ing special cases such as p-boxes or possibility dis-
tributions often allow the derivation of more efficient
algorithms for solving the problems.

5 Function with local
maxima/minima - univariate case

Now we consider a general form of the function h,
i.e., the function h (x) has alternate local maximum
at point ai and minimum at point bi−1, i = 1, 2, ...,
such that

b0 < a1 < b1 < a2 < b2 < ... (23)

Proposition 3. If local maxima (ai) and minima (bi)
of the function h satisfy condition (23), then the opti-
mal distribution F for computing the lower uncondi-
tional expectation E(h) has (vertical) jumps at points
bi, i = 1, .... of the size

min
(
F (bi) , αi+1

)
− max (F (bi) , αi) .

Between (vertical) jumps with numbers i − 1 and i,
the optimal probability distribution function F is of



the form:

F (x) =





F (x) , x < a′

αi, a′ ≤ x ≤ a′′

F (x) , a′′ < x
,

where αi is the root of the equation

h
(
max

(
F

−1
(αi) , bi−1

))
= h

(
min

(
F−1 (αi) , bi

))

in interval
[
F (ai) , F (ai)

]
,

a′ = max
(
F

−1
(αi) , bi−1

)
, a′′ = min

(
F−1 (αi) , bi

)
.

The upper expectation E(h) can be found from the con-
dition E(h) = −E(−h).

Proof using linear programming (brief sketch).
The first proof is based on the investigation of the
following local primal and dual optimization prob-
lems for computing the lower expectation of h in
finite interval [b0, b1] where h has one maximum at
point a1:

Primal problem:

v =
∫ b1

b0
h (x) f (x)dx → min subject to

f (x) ≥ 0, F0 ≥ 0, F1 ≥ 0,
−

∫ x

b0
f (t) dt − F0 ≥ −F (x) ,∫ x

b0
f (t) dt + F0 ≥ F (x) ,

−F0 ≥ −F (b0) ,F0 ≥ F (b0) ,
−F1 ≥ −F (b1) ,F1 ≥ F (b1) ,∫ b1

b0
f (t) dt + F0 − F1 = 0.

Dual problem:

w = −c0F (b0) + d0F (b0) − c1F (b1) + d1F (b1)

+
∫ b1

b0

(
−F (x) c (x) + F (x) d (x)

)
dx → max

subject to

e +
∫ b1

x
(−c (t) + d (t)) dt ≤h (x) ,

e − c0 + d0 +
∫ b1

b0
(−c (t) + d (t)) dt ≤0,

−e − c1 + d1 ≤ 0,
c (x) ≥ 0,c0 ≥ 0,c1 ≥ 0,
d (x) ≥ 0,d0 ≥ 0,d1 ≥ 0,e ∈ R

All inequalities in the above primal and dual prob-
lems are valid only for x ∈ [b0, b1]. Results similar
to those of proposition 1 can then be derived, and
it is interesting to note that b0, b1 play similar roles
to those of α,β in the conditional case. Finding the
optimal distribution between each bo, b1 leads to four
cases, depending on the situation. Figures 3.A-D il-
lustrate these situations. The optimal F for which
the lower expectation is reached is then a succession
of such subcases, with a vertical jump between each of
them (in figures 3.A-D, α, b0 and b1 are respectively
equivalent to αi, bi and bi+1 of proposition 3) .

Subcase 3.A Subcase 3.B

Subcase 3.C Subcase 3.D

Figure 3: Subcases of piecewise optimal F

Proof using random sets (brief sketch). For
convenience, we will consider that h begins with a
local minimum and ends with a local maxima an.
Formulas when h begins/ends with a local maximum
(minimum) are similar. Lower/upper expectations
can be computed as follows:

E(h) =

F (bn)∫

0

min
bi∈Aγ

(h(a∗γ), h(bi), h(a∗
γ))dγ +

1∫

F (bn)

h(a∗γ)dγ,

E(h) =

F (a1)∫

0

h(a∗
γ)dγ +

F (an)∫

F (a1)

max
ai∈Aγ

(h(a∗γ), h(ai), h(a∗
γ))dγ.

Let us explain a bit the equation for the lower ex-
pectation (details for upper one are similar). The
most interesting part is the first integral. Let B =
[bi, . . . , bj ] (i ≤ j) be the set of local minima in-
cluded in any particular set Aγ (B can be empty).
bi−1 and bj+1 are the closest local minima outside Aγ .
Let us consider the situation for which the lowest local
minima h(bk) s.t. bk ∈ B (an empty B is a degener-
ated case of this one) is higher than h(bi−1),h(bj+1).
As γ increases and as set Aγ evolves, various situa-
tions can happen. Either the infinimum shifts from
h(a∗γ) to h(bk) at some point (this is subcase 3.C)
or it shifts from h(bk) to h(a∗

γ) (subcase 3.D), or it
shifts from h(a∗γ) to h(a∗

γ) if h(bk) is too high (sub-
case 3.B). Subcase 3.A corresponds to the case of a
local minimum bi always dominating two other local
minima (equivalent to b0,b1) in any set Aγ . The jumps
in proposition 3 correspond to the situations where
the infinimum of h(x) has value h(bk), either until
h(bk) = h(a∗

γ) or until bk is on the border of Aγ as
γ increases. In the first case, it corresponds to an
"horizontal" jump and to one of the root α in propo-
sition 3, while in the latter case, the vertical jump



collapses with the upper cumulative distribution.

Similarly to figure 2, the optimal F will be a suc-
cession of vertical and horizontal jumps, sometimes
following either F or F after a vertical jump has "col-
lapsed" with F or an horizontal jump with F . The
proof using linear programming concentrates on "hor-
izontal" jumps, while the proof using continuous ran-
dom set emphasize vertical jumps. Again, each view
suggests a different way to approximate the result.

An appealing way of formulating lower expectation is
the following: let bj i = 1, . . . ,m be the local minima
where we have the "vertical" jumps and γj∗ , γj∗ the
associated levels on the set [0, 1]. Then we have

E(h)=
m
P

j=1

(

γj∗
R

γ(j−1)∗

inf
x∈Aγ

(h(a∗
γ),h(a∗γ))dγ+(γ(j+1)∗−γj∗ )h(bj)).

(24)

6 Conclusions

We have considered the problem of computing lower
and upper expectations on p-boxes and particular
functions under two different approaches: by using
linear programming and by using the fact that p-
boxes are special cases of random sets. Although the
two approaches try to solve identical problems, their
differences suggest different ways to approximate the
solutions of those problems. Moreover, some partic-
ular problems are easier to state (solve) in one ap-
proach than in the other (for example, the solutions
explored in section 4). But more important than their
differences is the complementarity of both approaches.
Indeed, one approach can shed light on some prob-
lems shaded by the other approach (e.g. the α level
of proposition 1). Another advantage of combining
both approaches is the ease with which some prob-
lems are solved and the elegant formulation resulting
from this combination (like in the conditional case).
Let us nevertheless note that the constraint program-
ming approach can apply to imprecise probabilities
in general, while the random set approach is indeed
limited to random sets.

Further works should concentrate on two directions:
exploring further some ideas that were stated in the
multivariate case (as well as deriving similar results
for independence types not considered here), and ex-
tending the presents results to the general case of a
function having many local extrema.
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