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Abstract—When merging belief functions, Dempster rule of combi-
nation is justified only when information sources can be considered as
independent and reliable. When dependencies are ill-known, it is usual
to require the combination rule to be idempotent, as it ensures a cautious
behaviour in the face of dependent sources. There are different strategies
to find such rules for belief functions. The strategy considered here
consists in relying on idempotent rules used in a more specific frameworks
and to study its extension to belief functions. We study two possible
extensions of the minimum rule of possibility theory to belief functions.
We first investigate under which conditions it can be extended to general
contour functions.We then further investigate the combination rule that
maximises the expected cardinality of the resulting random set.
Keywords: least commitment, ill-known dependencies, contour
function, information fusion.

I. INTRODUCTION

When merging belief functions, the most usual rule to do so is
Dempster’s rule of combination [4], normalized or not, which is
justified only when the sources can be assumed to be independent.
There are other merging rules that assume a specific dependence
structure between sources [8], [17]. However, the (in)dependence
structure between sources is seldom well-kown. An alternative is then
to apply the “least commitment principle”, which informally states
that one should never presuppose more beliefs than justified. This
principle is basic in the frameworks of possibility theory (minimal
specificity), imprecise probability (natural extension) [19], and the
Transferable Belief Model (TBM) [18]. It is natural to use it for the
cautious merging of belief functions.

There are different approaches to cautiously merge belief functions,
but they all agree on the fact that a cautious conjunctive merging
rule should satisfy the property of idempotence, as this property
ensures that the same information supplied by two sources will
remain unchanged after merging. There are three main strategies to
construct idempotent rules that make sense in the belief function
setting. The first one looks for idempotent rules that satisfy certain
desired properties and appear sensible in the framework of belief
functions [2], [5]. The second relies on the natural idempotent rule
consisting of intersecting sets of probabilities and tries to express
it in the particular case of belief functions [3]. The third approach,
explored in this paper, starts from the natural idempotent rule in a
less general framework, possibility theory, and tries to extend it. If we
denote m1,m2 two belief functions, P1,P2 two sets of probabilities,
and π1, π2 two possibility distributions, the three approaches are
summarized in Figure 1 below. We explore two different ways that
extend the minimum rule (in the sense that the minimum rule is
recovered when particularised to possibility distributions).

Section II recalls basics of belief functions and defines conjunctive
merging in this framework. Section III then studies to what extent the
minimum rule of possibility theory can be extended to the framework
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Figure 1. Search of idempotent merging rules

of belief functions. The idea is to request that the contour function
after merging be the minimum of the contour functions of the input
belief functions. We first formulate into a strong requirement, and
then propose a weaker one as the former condition turns out to be too
strong.Section IV studies the maximisation of expected cardinality as
a practical tool for selecting a minimally committed merged belief
structure. The notion of commensurate belief functions is used to gain
insight as to the structure of focal element combinations allowing to
reach a maximal expected cardinality. This paper synthesises and
completes previous results concerning our approach [6], [7]

II. PRELIMINARIES

We briefly recall basic tools needed in the paper. We denote by V
the finite space on which the variable takes its values.

A. Belief functions, possibility distributions and contour functions
We assume our belief state is modelled by a belief function, or,

equivalently, by a basic belief assignment (bba). A bba is a function m
from the power set 2V of V to [0, 1] such that

∑
A⊆V m(A) = 1. We

denote by MV the set of bba’s on 2V . A set A such that m(A) > 0
is called a focal set, and the value m(A) is the mass of A. This
value represents the probability that the statement V ∈ A is a correct
model of the available knowledge about variable V . We denote by
F the set of focal sets corresponding to bba m. Given a bba m,
belief, plausibility and commonality functions of an event E ⊆ V
are, respectively

bel(E) =
∑
∅6=A⊆E

m(A); pl(E) =
∑

A∩E 6=∅

m(A); q(E) =
∑
E⊆A

m(A)

A belief function measures to what extent an event is directly sup-
ported by the information, while a plausibility function measures the
maximal amount of evidence supporting this event. A commonality
function measures the quantity of mass that may be re-allocated to a
particular set from its supersets. The commonality function increases
when larger focal sets receive greater mass assignments, hence the
greater the commonality degrees, the less informative is the belief
function. Note that the four representations contain the same amount
of information [16].

In Shafer’s seminal work [16], no references are made to any
underlying probabilistic interpretation. However, a belief structure m



can also be interpreted as a convex set Pm of probabilities [19] such
that Bel(A) and Pl(A) are probability bounds: Pm = {P |∀A ⊂
X, Bel(A) ≤ P (A)}. Probability distributions are retrieved when
only singletons receive positive masses. This interpretation is closer
to random sets and to Dempster’s view [4].

A possibility distribution [10] is a mapping π : V → [0, 1] such
that π(v) = 1 for at least one element v ∈ V . It represents incomplete
information about V .Two dual functions, the possibility and necessity
function, are defined as: Π(A) = supv∈A π(v) and N(A) = 1 −
Π(Ac).

The contour function πm of a belief structure m is defined as a
mapping πm : V → [0, 1] such that, for any v ∈ V ,

πm(v) = pl({v}) = q({v}),

with pl, q the plausibility and commonality functions of m. A belief
structure m is called consonant when its focal sets are completely
ordered with respect to inclusion (that is, for any A,B ∈ F , we
have either A ⊂ B or B ⊂ A). In this case, the information
contained in the consonant belief structure can be represented by the
possibility distribution whose mapping corresponds to the contour
function π(v) =

∑
v∈Em(E). For non-consonant belief structures,

the contour function can be seen as a (possibly subnormalized)
possibility distribution containing a trace of the original information,
easier to manipulate than the whole random set.

B. Inclusion and information orderings between belief functions

Inclusion relationships are natural tools to compare the informative
contents of set-valued uncertainty representations. There are many
extensions of classical set-inclusion in the framework of belief
functions [9], leading to the definitions of x-inclusions, with x ∈
{pl, bel, q, s, π}. Let m1 and m2 be two bba defined on V . Inclusion
between them can be defined as follow:
{pl,q, π}-Inclusion m1 is said to be pl-included (resp. q- and

π-included) in m2 if and only if, for all A ⊆ V , pl1(A) ≤ pl2(A)
(resp. q1(A) ≤ q2(A) and πm1(x) ≤ πm2(x) for all x ∈ V) and
this relation is denoted by m1 vpl m2 and by m1 @pl m2 if the
above inequality is strict for at least one event (resp. m1 vq m2,
m1 vπ m2 and m1 @q m2, m1 @π m2)
s-inclusion m1 with F1 = {E1, . . . , Eq} is said to be s-included

in m2 with F2 = {E′1, . . . , E′p} if and only if there exists a non-
negative matrix G of generic term gij such that, for j = 1, . . . , p

q∑
i=1

gij = 1, gij > 0⇒ Ei ⊆ E′j ,
p∑
j=1

m2(E′j)gij = m1(Ei).

This relation is denoted by m1 vs m2 and by m1 @s m2 if there is
at least a pair i, j such that gij > 0 and Ei ⊂ Ej .

We will also say, when m1 vx m2 (m1 @x m2) with x ∈
{pl, q, s, π}, that m1 is (strictly) more x-committed than m2. The
following implications hold between these notions of inclusion [9]:

m1 vs m2 ⇒
{
m1 vpl m2

m1 vq m2

}
⇒ m1 vπ m2. (1)

These notions induces a partial ordering between elements of MV ,
and relation vπ only induces a partial pre-order (i.e., we can have
m1 vπ m2 and m2 vπ m1 with m1 6= m1), while the others induce
partial orders (i.e., they are antisymmetric). The following example
illustrates the fact that π-inclusion not being antisymmetric, we can
have strict q-inclusion and pl-inclusion in opposite directions while
having equality for these two functions on singletons. In fact, it is
obvious that m1 @pl m2 and m2 @q m1 imply πm1 = πm2 .

Example 1. Consider the two belief structures m1,m2 on the domain
V = {v1, v2, v3}

F1 m1 F2 m2

E11 = {v2} 0.5 E21 = {v2, v3} 0.5
E12 = {v1, v2, v3} 0.5 E22 = {v1, v2} 0.5

These two random sets have the same contour function, while
m1 @pl m2 and m2 @q m1. And πm1 = πm2 .

As all these notions induce partial orders between belief structures,
it can be desirable (e.g., to select a single least-specific belief struc-
ture) to use additional criteria inducing complete ordering between
belief structures. One of such criteria, already used to cautiously
merge belief functions [7], [14], is the expected cardinality of a
belief structure m, denoted by |m| and whose value is |m| =∑
E∈F m(E)|E|, . It is equal to the cardinality of the contour

function πm [13], that is

|m| =
∑
v∈V

πm(v). (2)

We can now define the notion of cardinality-based specificity:
C-specificity m1 is said to be more C-specific than m2 if and only

if we have the inequality |m1| ≤ |m2| and this relation is denoted
m1 vC m2 and by m1 @C m2 if the above inequality is strict. The
following proposition relates both π-inclusions and C-specificity to
other inclusion notions

Proposition 1. Let m1,m2 be two random sets. Then, the following
implications holds:

I m1 @s m2 → m1 @π m2

II m1 @π m2 → m1 @C m2

III m1 @s m2 → m1 @C m2

IV m1 @pl m2 → m1 vC m2

V m1 @q m2 → m1 vC m2

C. Conjunctive merging and least commitment

We define a belief structure m resulting from a conjunctive
merging of two belief structures m1,m2 as the result of the following
procedure [7]:

1) A joint mass distribution m is built on V2, with focal sets of
the form A × B,A ∈ F1, B ∈ F2 and preserving m1,m2 as
marginals. It means that

∀A ∈ F1, m1(A) =
∑
B∈F2

m(A,B), (3)

∀B ∈ F2, m2(B) =
∑
A∈F1

m(A,B).

2) Each joint mass m(A,B) is allocated to the subset A ∩B.

We call a merging rule satisfying these two conditions conjunctive,
and denote byM12 the set of conjunctively merged belief structures
from m1,m2. Not every belief structure m∩ obtained by conjunctive
merging is normalized (i.e. one may get m(∅) 6= 0). In this paper,
unless stated otherwise, we do not assume that a conjunctively merged
belief structure has to be normalised. We also do not renormalise such
belief structures, because, after renormalisation, they would no longer
satisfy Eq. (3). By construction, a belief structure m on V obtained
by a conjunctive merging rule is a specialisation of both m1 and m2,
andM12 is a subset of all belief structures that are specialisations of
both m1 and m2, that is M12 ⊆ {m ∈ MV |i = 1, 2, m vs mi},
with the inclusion being usually strict.Regarding the belief structures
inside M12, three situations can occur:



1) M12 contains only normalized belief functions. It means that
∀A ∈ F1, B ∈ F2, A ∩ B 6= ∅. The two bbas are said to be
logically consistent.

2) M12 contains both subnormalized and normalized bbas. It
means that ∃A,B,A ∩ B = ∅ and that Equations (3) have
solutions which allocate zero mass m(A,B) to such A×B. The
two bbas are said to be non-conflicting. Chateauneuf [3] shows
that non-conflict is equivalent to having Pm1 ∩ Pm2 6= ∅.

3) M12 contains only subnormalized belief functions. This situa-
tion is equivalent to having Pm1 ∩Pm2 = ∅. The two bbas are
said to be conflicting.

Unnormalized Dempster’s rule consists of merging belief structures
inside M12 with m(A,B) = m1(A) · m2(B) for the joint mass.
When the dependence between sources is not well known, a common
practice is to use the principle of least-commitment to build the
merged belief structure. Let us note Mvx

12 the set of all maximal
elements inside M12 when they are ordered with respect to x-
inclusion, with x ∈ {s, pl, q, π,C}. The least-commitment principle
often consists in choosing a particular x and picking a particular
element inside Mvx

12 that satisfies a number of desired properties.
Among these properties, satisfying idempotence is a natural require-
ment. Indeed, if m1 = m2 = m, a cautious merging should integrate
the fact that both sources found their opinion on the same body of
information. This comes down to the following requirement:

Idempotence A least-committed merging should be idempotent.
To build a cautious merging rule satisfying idempotence, one can

try to adapt idempotent rules of other frameworks to the merging of
belief structures, as done by Chateauneuf [3] for sets of probabilities.

D. The minimum rule of possibility theory

If π1, π2 are two possibility distributions, the natural conjunctive
idempotent rule between them is the pointwise minimum [11]:

π1∧2(v) = min(π1(v), π2(v)), ∀v ∈ V.

Let m1,m2 be the consonant belief structures corresponding to possi-
bility distributions π1, π2. In this case, the consonant belief structure
corresponding to min(π1, π2) lies insideM12 [15]. It assumes some
dependency between focal sets. Smets and colleagues [14], have
shown the following result concerning the minimum rule.

Proposition 2. The consonant belief structure whose contour func-
tion is min(π1, π2) is the single least q-committed belief structure in
M12

This consonant merged belief structure is also the least π-
committed insideM12, and one of the s-least committed insideM12

The next example completes Example 1 and indicates that none of
Mvs

12 or Mvπ12 is necessarily reduced to a single element.

Example 2. Consider the two following possibility distributions π,ρ,
expressed as belief structures mπ,mρ

Fπ mπ Fρ mρ

A1 = {v0, v1, v2} 0.5 B1 = {v2, v3} 0.5
A2 = {v0, v1, v2, v3} 0.5 B2 = {v1, v2, v3, v4} 0.5

The two belief structures m1,m2 of Example 1, which have the
same contour function, can be obtained by conjunctively merging
these two marginal belief structures. None of these two belief struc-
tures is s-included in the other, while we do have m2 @q m1.

In the rest of the paper, we will study how to extend the natural
idempotent and cautious minimum rule originating from possibility
theory, and under which conditions the conjunctive merging of belief
structures can be such an extension.

III. EXTENDING THE POSSIBILISTIC IDEMPOTENT RULE TO

BELIEF FUNCTIONS

Now, let us consider two bbas m1,m2 and their respective contour
functions πm1 , πm2 . A first interesting property is the following:

Proposition 3 (s-covering). Let m1,m2 be two belief structures.
Then, the following inequality holds for any v ∈ V:

max
m∈M12

πm(v) ≤ min(πm1(v), πm2(v)). (4)

To extend the minimum rule of possibility theory to the non-
consonant case, it makes sense to ask for inequality (4) to become an
equality. We study two different ways to formulate this requirement
on conjunctively merged belief structures, a strong and a weak form.

A. Strong Idempotent Contour Function Merging (SICFM)

Definition 1 (Strong idempotent contour function merging principle
(SICFMP)). Let m1,m2 be two belief structures and M12 the set
of conjunctively merged belief structures. Then, an element m1∧2 in
M12 is said to satisfy the strong idempotent contour function merging
principle if, for any v ∈ V,

πm1∧2(v) = min(πm1(x), πm2(v)), (5)

with πm1∧2(v) the contour function of m1∧2(v).

We require that the selected merged belief structure should have a
contour function equal to the minimum of the two marginal contour
functions. It is an extension of the possibilitic minimum rule, since we
retrieve it if both m1,m2 are consonant. Let us show that satisfying
the SICFMP also implies satisfying the property of idempotence.

Proposition 4 (idempotence). Let m1 = m2 = m be two iden-
tical belief structures. Then, the unique element in M12 satisfying
Equation (5) is m1∧2 = m.

The SICFMP is therefore a sufficient condition to ensure that a
merging rule is idempotent. It also satisfies the following property,
showing that it is coherent with the notion of specialisation.

Proposition 5 (s-coherence). Let m1 be (strictly) s-included in m2,
that is m1 @s m2. Then, the unique element in M12 satisfying
Equation (5) is m1∧2 = m1.

To see that Proposition 5 do not extend to the notions of pl- and
q-inclusions, consider the following example

Example 3. Consider the two belief structures in Example 1. They
have equal contour function but one is strictly pl-included in the
other, while the other is strictly q-included in the first. There are two
(consonant) s-least committed belief structures resulting from con-
junctive merging inM12, one obtained as {(E11∩E21, 0.5), (E12∩
E22, 0.5)} = {({v2}, 0.5), ({v1, v2}, 0.5)} and the other as {(E11∩
E22, 0.5), (E12 ∩ E21, 0.5)} = {({v2}, 0.5), ({v1, v3}, 0.5)}. None
satisfies the SICFMP nor are equal to one of the marginal belief
structure (thus Proposition 5 do not extend to pl and q-inclusions).

1) Satisfying the SICFMP is difficult for general belief functions:
Necessary and sufficient conditions under which the merged bba has
a contour function satisfying the SICFMP have been found by Dubois
and Prade [12]. Namely let m ∈ M12, and let m(Ai, Bj) be the
fraction of the mass allocated to Ai ∩ Bj taken from the masses of
focal elements Ai of m1 and Bj of m2. Its contour function is such
that the minimum rule is recovered if and only if ∀v ∈ V, one of∑
v∈Ai∩Bc

j
m(Ai, Bj) or

∑
v∈Ac

i∩Bj
m(Ai, Bj) is equal to 0. For



each v ∈ V, it comes down to enforcing m(Ai, Bj) = 0 either for
all i, j such that v ∈ Ai ∩Bcj , or for all i, j such that v ∈ Aci ∩Bj .

Example 4. Let V = {a, b, c} and m1,m2 be such that

m1({a}) = 0.2 ; m1({a, b}) = 0.1 ; m1({a, c}) = 0.3

m1({b, c}) = 0.3 ; m1({a, b; c}) = 0.1

m2({a}) = 0.3 ; m2({a, b}) = 0.4 ; m2({a, b, c}) = 0.3.

We can decide to let m(Ai, Bj) = 0 for a, b ∈ Ai ∩ Bcj
and c ∈ Aci ∩ Bj . Then, for b, it enforces m({a, b}, {a}) =
m({b, c}, {a}) = m({a, b, c}, {a}) = 0, for c, m({a}, {a, b, c}) =
m({b, c}, {a, b, c}) = 0, but it creates no such constraint for a. The
following joint mass provides a solution to the marginal equations
(where entries 0b, 0c are enforced by the SICFMP):

m(Ai, Bj) {a} {a, b} {a, c} {b, c} {a, b, c}
{a} 0.1 0b 0.2 0b 0b
{a, b} 0.1 0.1 0 0.2 0

{a, b, c} 0c 0c 0.1 0.1 0.1

There are at most 2C(V) possible sets of constraints of the form
m(Ai, Bj) = 0 on top of marginal constraints (2 options for each
element v of V). Not all of these problems will have solutions, and
even less if we restrict to normalised belief structures. Checking the
existence of a solution is also a difficult task, and in practice, there
may be specific cases where the problem always have solutions. This
is why, in the following, we separately consider the cases of logically
consistent (situation 1), non-conflicting (situation 2) or conflicting
(situation 3) marginal belief structures. The next tree examples show
that SICFMP cannot always be satisfied in all these subcases

Example 5. Consider the two belief structures m1,m2 of Example 1
as marginal belief structures. They are logically consistent, and if
there is a belief structure m1∧2 in M12 that satisfy SICFMP, this
belief structure should have the contour function of both m1 and m2:
pl1∧2(v1) = 0.5, pl1∧2(v2) = 1 and pl1∧2(v3) = 0.5, resulting in
an expected cardinality |m1∧2| equal to 2.

Writing the linear program maximising expected cardinality , we
obtain a maximal expected cardinality of 1.5, (consider for example
m1∩2({v2, v3}) = 0.5, m1∩2({v2}) = 0.5). This maximal expected
cardinality is less than the one a conjunctively merged belief structure
satisfying the SICFMP would reach

Example 6. Consider V = {v1, v2, v3} and the two non-conflicting
marginal random sets m1, m2 summarized below

Set {v1} {v2} {v3} {v1, v2} {v1, v3} {v2, v3} V
m1 0.3 0 0 0 0 0.4 0.3
m2 0.2 0.1 0.1 0.2 0.2 0.1 0.1

The minimum πmin of their contour functions is s.t. πmin(v1) = 0.6,
πmin(v2) = 0.5 and πmin(v1) = 0.5. The expected cardinality of this
minimum is 1.6. However, the maximal expected cardinality reached
by an element ofM12 is 1.5 (consider, for example, the conjunctively
merged belief function such that m({v1}) = 0.3, m({v2}) =
m({v1, v3}) = 0.2, m({v3}) = m({v2, v3}) = m(V) = 0.1).
Therefore, there is no element in M12 satisfying the SICFMP.

Example 7. Consider the two conflicting random sets m1,m2

summarised below.

F1 m1 F2 m2

E11 = {v2} 0.5 E21 = {v1v2, v3} 0.5
E12 = {v3} 0.5 E22 = {v1} 0.5

hhhhhhhhhhhSituation
Constraints Consonant m1∩2(∅) = 0 unconst.

Logically consistent
√

× ×
Non-conflicting

√
× ×

Conflicting
√

N.A. ×
Table I

SATISFIABILITY OF SICFMP GIVEN m1,m2 .
√

: ALWAYS SATISFIABLE.
×: NOT ALWAYS SATISFIABLE. N.A.: NOT APPLICABLE

The minimum πmin of their contour functions is s.t. πmin(v1) = 0,
πmin(v2) = πmin(v1) = 0.5, with expected cardinality 1. However,
the maximum expected cardinality reachable by an element of M12

is 0.5 (by distributing m2({v1v2, v3}) to either v2 or v3.

Table I summarises when the SICFMP can always be satisfied.
Except for specific kind of belief structures, the SICFMP is difficult
to satisfy, and is too strong a requirement in general. An alternative,
explored in the next section, is to relax the requirement for the
merging result to be a single belief structure, and to consider sets
of belief structures jointly satisfying the idempotent contour function
merging principle as possible result. This goes in the same line as
proposals of other authors [1].

B. Weak idempotent contour function merging principle (WICFMP)

Definition 2 (WICFMP). Consider two belief structures m1,m2 and
M12 the set of conjunctively merged belief structures. Then, a subset
M ⊆M12 is said to satisfy the weak idempotent contour function
merging principle if, for any v ∈ V,

max
m∈M

πm(v) = min(πm1(v), πm2(v)), (6)

Any marginal random set for which the SICFMP can be satisfied
also satisfies the WICFMP. However, we are searching for subsets of
M12 that always satisfy the WICFMP.

1) Subsets of normalised merged belief functions: A first interest-
ing subset of M12 to explore is the one containing only normalised
merged belief structures. As it coincides with P1 ∩P2, we denote it
byMP1∩P2 . Again, if constraints imposed on belief structures in the
subset are linear, we can check that this subset satisfies the WICFMP
by linear programming (writing one program for each v ∈ V to check
that Eq. (6) is satisfied).

Example 8. Consider the two marginal belief structure m1,m2 on
V = {v1, v2, v3} such that

m1({v1}) = 0.5; m1({v1, v2, v3}) = 0.5,

m2({v1, v2}) = 0.5; m2({v3}) = 0.5.

The minimum of contour functions πmin = min(π1, π2) is given
by πmin(vi) = 0.5 for i = 1, 2, 3. The only merged bba m12 to
be in MP1∩P2 is m12({v1}) = 0.5,m12({v3}) = 0.5, for which
π12(v2) = 0 < 0.5.

The example also indicates that requiring logical consistency (i.e.,
m(∅) = 0) while conjunctively merging uncertain information
can be, in some situations, too strong a requirement Indeed, the
element v2 is considered as impossible by the intersection of sets of
probabilities, while both sources consider v2 as somewhat possible.

2) Subsets of s-least committed merged belief structures: Another
possible solution is to consider a subset coherent with the least
commitment principle. That is, given two belief structures m1,m2,
we consider the subsets Mvx

12 , with x ∈ {s, pl, q, π}. Recall
that Mvx

12 = {m ∈ M12| 6 ∃m′ ∈ M12,m @x m′}. The
following proposition shows that the subset of s-least committed
belief structures in M12 always satisfies the WICFMP.



`````````Situation
Subset MP1∩P2

Mvs
12 M

vpl
12 Mvq

12 M
vπ
12

Logically consistent
√ √ √ √ √

Non-conflicting ×
√ √ √ √

Conflicting N.A.
√ √ √ √

Table II
SATISFIABILITY OF WICFMP GIVEN m1,m2 .

√
: ALWAYS SATISFIABLE.

×: NOT SATISFIABLE IN GENERAL. N.A.: NOT APPLICABLE

Proposition 6. Let m1,m2 be two marginal belief structure on V .
Then, the subset Mvs

12 satisfies the WICFMP, in the sense that

max
m∈Mvs

12

πm(v) = min(π1(v), π2(v)),

with π1, π2, πm the contour functions of, respectively, m1,m2,m.

Another interesting result follows from Proposition 6.

Corollary 1. Let m1,m2 be two marginal belief structures on V .
The subsets Mvx

12 for x = {pl, q, π} satisfy the WICFMP, i.e.,

max
m∈Mvx

12

πm(x) = min(π1(x), π2(x)),

with π1, π2, πm the contour functions of, respectively, m1,m2,m.

One consequence of this is that if any of the subsets Mvx
12 with

x = {s, pl, q, π} is a singleton, than this singleton satisfy SICFMP.
This is, for instance, the case with Mvq

12 when both m1,m2 are
consonant. Table II summarises for which subset of merged belief
structures the WICFMP is always satisfiable. Note that Corollary 1 is
not valid for expected cardinality, as shows the next counterexample:

Example 9. Consider the same marginal belief structures
as in Example 7, except that the element v3 is
replaced by {v3, v4}, as summarized in the next table.

F1 m1 F2 m2

E11 = {v2} 0.5 E21 = {v1v2, v3, v4} 0.5
E12 = {v3, v4} 0.5 E22 = {v1} 0.5

The two possible idempotently merged belief structures allocate
0.5 respectively to {v3, v4} or {v2} and both remain s-least specific.
The former has a greater expected cardinality, and is the unique
element having maximal expected cardinality, but it does not satisfy
the WICFMP.

In fact, assume that there are two distinct merged bba’s m,m′

that are π-least-committed. They have contour functions π, π′ such
that ∃v1 6= v2 ∈ V, π(v1) > π′(v1) and π′(v2) > π(v2). Assume
they are also C-least specific, i.e. |mm| =

∑
v∈V π(v) = |mm′ | =∑

v∈V π
′(v). Now, assume V is changed into another frame of

discernment W , a refinement of V where v1 is changed into a subset
V1 and v2 into a subset V2 disjoint from V1. While the two π-least
committed merged bba’s m,m′ become two distinct least committed
merged bba’s mW ,m

′
W on W , they will in general have different

cardinalities, and hence not be both C-least specific.

IV. MAXIMIZING THE CARDINALITY OF MERGED BELIEF

STRUCTURES

C-least specific belief functions being also π-least committed, it
is of interest to have practical ways of finding them. In order to get
insight into such least committed bbas, we consider a generic method,
based on the concept of commensurate bbas [15], from which any
merged belief structure satisfying Eq. (3) can be built. Using this
method, Dubois and Yager show that there are a lot of idempotent
rules that combine two bbas. Here, we use it to induce guidelines as

to how bbas should be combined to result in a least-committed bba
in the sense of expected cardinality. We first recall some definitions.

A. Commensurate bba’s

In the following, we generalise the notion of bba, assuming that a
generalized bba may assign several weights to the same subset of V .

Definition 3. Let m be a bba with focal sets A1, . . . , An and
associated weights m1, . . . ,mn. A split of m is a bba m′ with
focal sets A′1, . . . , A

′
n′ and associated weights m′1, . . . ,m′n

′
s.t.∑

A′
j=Ai

m′j = mi

A split is a new bba where the weight given to a focal set is sepa-
rated in smaller weights given to the same focal set, with the sum of
weights given to a specific focal set being constant. Two generalized
bbas m1,m2 are said to be equivalent if pl1(E) = pl2(E) ∀E ⊆ V .
In the following, a bba should be understood as a generalized one.

Definition 4. Let m1, m2 be two bbas with respective fo-
cal sets {A1, . . . , An}, {B1, . . . , Bk} and associated weights
{m1

1, . . . ,m
n
1 }, {m1

2, . . . ,m
k
2}. Then, m1 and m2 are said to be

commensurate if k = n and there is a permutation σ of {1, . . . , n}
s.t. mj

1 = m
σ(i)
2 , ∀i = 1, . . . , n.

Two bbas are commensurate if their distribution of weights over
focal sets can be described by the same vector of numbers. Dubois
and Yager [15] propose an algorithm that makes any two bbas
commensurate by successive splitting, given a ranking of focal sets on
each side. This merging rule is conjunctive is summarized as follows:
• Let m1, m2 be two bbas and {A1, . . . , An}, {B1, . . . , Bk}

the two sets of ordered focal sets with weights {m1
1, . . . ,m

n
1 },

{m1
2, . . . ,m

k
2}

• By successive splitting of each bbas (m1, m2), build two
generalised bbas {R1

1, . . . , R
l
1} and {R1

2, . . . , R
l
2} with weights

{m1
R1
, . . . ,ml

R1
}, {m1

R2
, . . . ,ml

R2
} s.t. mi

R1
= mi

R2
and∑

Ri
1=Aj

= mj
1,
∑
Ri

2=Bj
= mj

2.
• Algorithm results in two commensurate bbas mR1 , mR2 that

are respectively equivalent to the original bbas m1, m2.
Once this commensuration is done, the conjunctive rule

⊕
pro-

posed by Dubois and Yager defines a merged bba m12 ∈M12 with
focal sets {Ri1⊕

2 = Ri1 ∩Ri2, i = 1, . . . , l} and associated weights
{mi

R1
⊕

2
= mi

R1
= mi

R2
, i = 1 . . . , l}. The whole procedure is

illustrated by the following example.

Example 10. Commensuration

l mRl Rl1 Rl2 Rl1⊕
2

m1 m2 1 .5 A1 B1 A1 ∩B1

A1 .5 B1 .6 2 .1 A2 B1 A2 ∩B1

A2 .3 B2 .2 → 3 .2 A2 B2 A2 ∩B2

A3 .2 B3 .1 4 .1 A3 B3 A3 ∩B3

B4 .1 5 .1 A3 B4 A3 ∩B4

Clearly, the final result crucially depends of the chosen rankings
of the focal sets of m1 and m2. In fact, it can be shown that any
conjunctively merged bba can be produced in this way.

Definition 5. Two commensurate generalised bbas are said to be
equi-commensurate if each of their focal sets has the same weight.

Any two bbas m1, m2 can be made equi-commensurate
by successive splitting. Combining two equi-commensurate bbas
{R1

1, . . . , R
l
1}, {R1

2, . . . , R
l
2} by Dubois and Yager rule results in

a bba s.t. every focal element in {R1
1
⊕

2, . . . , R
l
1
⊕

2} has equal
weight mR1

⊕
2
. The resulting bba is still inM12. The cardinality of



such a bba only depends on the cardinality of these focal elements.
We also have the following property

Proposition 7. Any bba inM12 can be reached by means of Dubois
and Yager rule using appropriate commensurate bbas equivalent to
m1 and m2 and the two appropriate rankings of focal sets.

B. A property of C- least committed merging

We now have to look for appropriate rankings of focal sets so
that the merged bba obtained via commensuration has maximal
cardinality. The answer is : rankings should be extensions of the
partial ordering induced by inclusion (i.e. Ai < Aj if Ai ⊂ Aj ).
This is due to the following result:

Lemma 1. Let A,B,C,D be four sets s.t. A ⊆ B and C ⊆ D.
Then, we have the following inequality

|A ∩D|+ |B ∩ C| ≤ |A ∩ C|+ |B ∩D| (7)

We are now ready to prove the following proposition

Proposition 8. If m ∈ M12 is minimally committed for expected
cardinality, there exists an idempotent conjunctive merging rule

∧
constructing m by the commensuration method, s.t. focal sets are
ranked on each side in agreement with the partial order of inclusion.

Indeed, assume that in the rankings of two commensurate bbas
mR1 ,mR2 , there are four focal sets Ri1, R

j
1, R

i
2, R

j
2, i < j, such that

Ri1 ⊃ Rj1 and Ri2 ⊆ Rj2. By Lemma 1, |Rj1 ∩R
j
2| + |Ri1 ∩Ri2| ≤

|Rj1 ∩Ri2|+ |Ri1 ∩R
j
2|. Hence, if we permute focal sets Ri1, R

j
1 and

apply Dubois and Yager’s merging rule, we end up with an expected
cardinality at least as great as the one obtained without permutation.

However, the following example shows that one cannot just con-
sider any ranking refining the partial order induced by focal sets
inclusion and reach a C-least specific element.

Example 11. Let m1,m2 be two bbas of the space X = x1, x2, x3
such that m1(A1 = {x1, x2}) = 0.5,m1(A2 = {x1, x2, x3}) = 0.5
and m2(B1 = {x2}) = 0.3, m2(B2 = {x2, x3}) = 0.3,
m2(B3 = {x1, x2}) = 0.1, m2(B4 = {x1, x2, x3}) = 0.3. Ranking
B1, B2, B3, B4 is one of the two extensions of the inclusion partial
order. The result of Dubois and Yager’s rule gives us:

l mRl Rl1 Rl2 Rl1⊕
2

1 .2 A1 B1 A1 ∩B1 = {x2}
2 .3 A1 B2 A1 ∩B2 = {x2}
3 .1 A2 B2 A2 ∩B2 = {x2, x3}
4 .1 A2 B3 A2 ∩B3 = {x1, x2}
5 .3 A2 B4 A1 ∩B4 = {x1, x2, x3}

and the expected cardinality of the merged bba is 1.8. Considering
the other possible extensionB1, B3, B2, B4, Dubois and Yager’s rule
now result in a bba having 2 as expected cardinality, strictly greater
than the former one.

Remark 1. The cardinality of subnormalized belief structures should
be handled with caution. Comparing the cardinalities of bbas that
assign different weights to the empty set is questionable, since very
precise and low conflicting bbas could be judged more cautious than
very imprecise but highly conflicting ones.

V. CONCLUSION

In this paper, we have considered possible extensions of the
possibilistic minimum rule to general belief functions merging. To
do such an extension, we have proposed a strong and weak version
of a principle based on contour functions, providing constraints a

solution must satisfy to meet the strong version requirements. From
our results, it turns out that only the weak version, requiring the
merging result to be a set of belief functions, can be easily satisfied. In
this case, the small set of π-least committed merged belief functions
appears to be a good solution.

At the theoretical level, this paper provides interesting insights. In
particular, it indicates that extending cautious possibilistic merging
to belief function framework require to consider sets of potentially
unnormalised belief functions as solutions. This goes in the sense
of authors defending both the need of unnormalised uncertainty
representation (acknowledging the open world assumption [18]) and
the need of more generic models than belief functions.

From a practical standpoint, our results are incomplete, as they do
not lead to easy-to-use cautious merging rule for belief functions.
Nevertheless, we have provided constraints a solution must satisfy
to meet the SICFMP, and the commensuration method exploiting
focal set inclusion may be helpful to alleviate the computational
burden, especially in the search of C − least committed merged
bbas. Still, such bbas do not satisfy, in general, the WICFMP, and
it is desirable to develop practical methods that allows to retrieve
the set of x-least committed merged bbas (with x ∈ {s, p, q, π})
from m1,m2. We think that a possible answer may come from the
systematic exploration of the geometrical properties of the convex
polytope M12 and its extreme points.
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