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Abstract—Many extensions of classical stochastic independence have
been proposed when working with probability sets to represent uncer-
tainty. As belief functions can be seen as particular instances of such
probability sets, some authors have investigated how these extensions
can be reinterpreted and retrieved in the particular framework of
belief functions. They have mainly focused on the so-called notions of
random set independence, fuzzy non-interaction, strong independence
and unknown interaction. In this paper, we pursue this effort in two
ways: first by showing that the notion of epistemic irrelevance, central in
Walley theory of lower previsions, can be likewise reinterpreted in terms
of belief functions; second by considering the more general case where
mass assignments inducing belief functions are themselves imprecise.
Keywords: independence, belief functions, imprecise probability,
random sets.

I. INTRODUCTION

The notion of stochastic independence is essential in probability
theory, its associated factorization properties allowing to decompose a
complex problem into simpler ones, or to easily build joint probabil-
ities from marginal ones. When working with imprecise probabilities
rather than precise ones, the concept of independence can be extended
in many different ways, depending on the interpretation it is given.
Such extensions have been proposed and compared by many authors
(see, for example, Walley [16] and Couso et al. [4]).

Evidence theory [14] is formally embedded in the theory of impre-
cise probabilities, and belief functions can be seen as particular in-
stances of generic lower probabilities. Therefore, independence con-
cepts issued from imprecise probability theory can be reinterpreted
in the particular framework of evidence theory. For instance, Fetz
and Oberguggenberger [9], [10] consider different formal ways to
combine both weights given to focal sets and probability distributions
inside each focal sets. Depending on the conditions they impose to
these combinations, they retrieve the different independence concepts
that are unknown interaction, strong independence, random set inde-
pendence, and fuzzy non-interaction. More specifically, they establish
three types of condition, the first concerning focal set weights, and
the two others concerning the combination and choice of probabilities
inside each focal set. Couso [3] complete and pursue this study
by providing interpretations for the formal links identified by Fetz
and Oberguggenberger. She associates Fetz and Oberguggenberger’s
conditions to a 2-step random process (i.e., ball drawing from urns)
with particular independence features.

In this paper, we go further in the study of independence concepts
settled in the framework of evidence theory. First, we interest
ourselves to the notion of epistemic irrelevance. Although this
asymmetrical independence notion, central in Walley’s interpretation
of imprecise probabilities, has received important attention in the
past [6], [15], it has, up to now, not been considered in the particular
framework of evidence theory. We then consider a more general case

of imprecise mass assignments [1], and study to which extent some
of the results of Fetz and Oberguggenberger still hold in this case.

We first recall the framework of evidence theory, as considered by
Fetz and Couso (Section II). In Section III, we recall the results they
obtain and show that, formally, they can be easily extended to the case
of epistemic irrelevance or to the case where mass assignments are
made imprecise. We also discuss brifely the possible interpretation
of these extensions. Note that this paper is mainly concerned with
belief functions interpreted as lower probabilities. Other interpretation
of belief functions, such as the Transferable Belief Model, have led
to other notions of independence [2], also generalising the classical
notion of stochastic independence.

II. PRELIMINARIES

We recall here basic notions and introduce notations used in the
rest of the paper

A. Imprecise probabilities and evidence theory

Let X be the finite domain on which a variable X assumes its
values. In imprecise probability theory, the uncertainty about the
value of X is described by a convex probability set P . This set
induces, on any event A, lower and upper probability bounds

P (A) = sup
p∈P

P (A); P (A) = inf
p∈P

P (A)

with p a probability mass function on X , and P the corresponding
probability measure. These two bounding measures are dual, in
the sense that P (A) = 1 − P (Ac) for any event A ⊆ X . A
lower probability P induce a set of dominating probability measures,
denoted by P(P ) and such that P(P ) = {p ∈ PX |P (A) ≥ P (A)},
with PX the set of all probability mass functions over X . In general,
P(P ) is a proper subset of P .

In fact, to describe any probability set P by means of lower and
upper bounds, one needs the richer language of bounded expected
values [16]. Let f be any real-valued bounded function on X . Then,
its lower and upper expected values, denoted by E(f) and E(f), are

E(f) = inf
p∈P

∑
x∈X

p(x)f(x); E(f) = sup
p∈P

∑
x∈X

p(x)f(x).

Lower and upper probabilities of an event A are retrieved when f
is the indicator function IA of A (IA(x) = 1 when x ∈ A, zero
otherwise). In his theory of lower previsions, Walley argues1 that
lower expectations modelling beliefs can be interpreted as behavioural
dispositions of an agent toward a so-called gamble f , namely that
E(f) is the maximum buying price an agent is ready to pay for f ,
given its beliefs about the value of variable X . Lower and upper

1In the same way as De Finetti does for classical expectations.



probabilities of an event A are retrieved when f is the indicator
function IA of A (IA(x) = 1 when x ∈ A, zero otherwise).

A probability set that will be of interest here is the vacuous
probability set of an event A ⊆ X , representing the fact that all
we know is that X ∈ A. This set, that we denote by IA is such that
IA = {p ∈ PX |P (A) = 1}.

In the mathematical theory of evidence [14], uncertainty is de-
scribed by means of a mass assignment m : 2|X| → [0, 1] equivalent
to a probability mass function defined over the power set of X (i.e.∑

A∈X m(A) = 1 and m(∅) = 0). Subsets receiving positive mass
are called focal sets, and are denoted here F . m(A) can be interpreted
as the probability that our knowledge is X ∈ A, and nothing else.
This mass assignment induces two measures called plausibility and
belief, resp. denoted Pl and Bel and defined, for any event E ∈ X ,
as follows:

Bel(E) =
∑
A⊆E

m(A); Pl(E) = 1−Bel(Ec) =
∑

A∩E 6=∅

m(A).

These measures induce a particular probability set P(Bel). Now, if
F = {A1, . . . , Am} and if we associate to each focal set the set
IAi , P(Bel) can be described as follows:

P(Bel) = {p ∈ PX |p =

m∑
i=1

m(Ai)pi, pi ∈ IAi}. (1)

That is, probabilities in the set can be recovered by picking, in each
focal set, a probability mass function having this set for support. This
is the view taken by Fetz.

B. Independence concepts for imprecise probabilities

Now, let X and Y be two variables respectively assuming their
values on the finite spaces X and Y . Marginal uncertainty about
their true values are given by probability sets PX and PY . To
make assessments about the value these two variables can jointly
assume, it is necessary to build a joint uncertainty representation
over X × Y . Independence assessments are instrumental tools to
build such joint representations. First, we assume X and Y to be
logically independent, i.e., any joint observation x, y ∈ X × Y is
deemed possible, as it is a necessary condition to have other kinds
of independence. The independence concepts we consider here are
the one of strong independence, epistemic irrelevance and random
set independence.

The concept of strong independence extends directly the concept of
stochastic independence, in the sense that we retrieve it when taking
the stochastic product of every probability mass function inside PX

and PY . The probability set induced by an assumption of strong
independence, denoted by PSI , is such that

PSI = {p ∈ PX×Y |∀x, y ∈ X × Y, p(x, y) = pX (x)pY(y),

pX ∈ PX , pY ∈ PY }.

The concept of epistemic irrelevance corresponds to an asymmetric
concept, expressing the idea that learning the value of a variable
do not modify our beliefs or uncertainty about the value of another
variable (not excluding the possibility that learning the value of the
latter may modify our uncertainty about the former). Consider the
assumption that X is epistemically irrelevant to Y and denote it
by X 6→ Y . Let us denote by PX 6→Y a set of joint probability
distributions over X ×Y , and for a given distribution p ∈ PX 6→Y , let
pY(·|x) denote its conditional probability distribution on Y , obtained
by pY(y|x) = p(y,x)/P ({y×X}), with P the measure induced by p.
In this case, X is epistemically irrelevant to Y when

{pY(·|x)|p ∈ PX 6→Y } = PY ,

that is, our conditional knowledge given the X agrees with our
marginal uncertainty about Y . This captures the idea that learning the
value of X does not change our uncertainty about Y . The probability
set induced by this assumption, denoted by PX 6→Y , is such that

PX 6→Y = {p ∈ PX×Y |∀x, y ∈ X × Y, p(x, y) = pY(y|x)pX (x),
pX ∈ PX , pY(·|x) ∈ PY },

with pY(·|x) the conditional probability mass function on Y given
X = x, whose particular values may depend on the value x. The
notion can also be expressed in terms of lower expectation of a
function f defined on X × Y as follows: for any function f whose
values only depend on Y (i.e., for a given y ∈ Y , f(x, y) has the
same value for every x ∈ X ), epistemic irrelevance of X towards Y
implies that

E(f |x) = inf
p∈PX 6→Y

∑
pY(y|x)f(y, x) = EY(f)

where EY(f) is the lower expectation of f restricted to Y given PY .
Equality EY(f |x) = E(f) well express the fact that learning x do
not change our uncertainty about Y .

Note that PSI is recovered if pY (·|x) is constrained to remain the
same whatever the value of x. The concept of epistemic independence
corresponds to assert that both variables are epistemically irrelevant
to each other. It can be retrieved by considering the intersection of the
two sets generated by separated epistemic irrelevance assessments [4].

The concept of random set independence has, up to now, no clear
interepretation in the imprecise probability theory (we will come back
to it later), however it is still widely used [12], mainly for its practical
interests. Assume that PX and PY are induced by mass assignments
mX and mY , with FX = {A1, . . . , Am} and FY = {B1, . . . , Bn}.
Then, the probability set induced by an assumption of random set
independence, denote by PRI , is the probability set induced by the
joint mass assignment mRI defined on 2|X| × 2|Y| and such that

∀Ai ×Bj ⊆ X × Y,mRI(Ai ×Bj) = mX(Ai) ·mY (Bj).

The following inclusions hold between the probability sets induced
by these independence assumptions

PSI ⊆
{
PX 6→Y

PY 6→X

}
⊆ PRI

Also recall that, when the two probability sets PX and PY are
vacuous probability sets IA, IB with A ⊆ X , B ⊆ Y , then the joint
probability set induced by any of the above independence concept is
simply IA×B , i.e., the vacuous probability set corresponding to the
Cartesian product A×B.

III. INDEPENDENCE IN EVIDENCE THEORY

We now proceed to transfer and re-examine all these concepts in
the setting of evidence theory.

A. Existing results

Let PX and PY be two probability sets induced by mass assign-
ments mX ,mY with focal sets FX = {A1, . . . , Am} and FY =
{B1, . . . , Bn}. Then, any joint probability P over X × Y having
marginals in PX ,PY can be formed by the following procedure:
• m is a mass assignment over 2|X| × 2|Y| such that, for any
i = 1, . . . ,m and j = 1, . . . , n

m(Ai) =

n∑
j=1

m(Ai ×Bj); m(Bj) =

m∑
i=1

m(Ai ×Bj)



• For each joint focal set Ai × Bj , define a probability mass
function pij ∈ IAi×Bj

• The probability mass function p =
∑n

j=1

∑m
i=1m(Ai×Bj)p

ij

has marginals in PX ,PY .
Given a probability mass function pij defined over X ×Y , we denote
by pijX and pijY its marginals over X and Y , that is, for any x ∈ X
(y ∈ Y), pijX (x) = P ij({x} × Y) (pijY (y) = P ij(X × {y})), with
P ij the probability measure induced by pij .

Since any probability mass function having marginals in PX ,PY

can be built by the above procedure, considering all of them is equiva-
lent to the joint probability set induced by an assumption of unknown
interaction (i.e. considering all possible dependency structures). To
retrieve smaller sets induced by specific independence assumptions,
one has to constraint how joint probabilities are built from marginals.
There are basically three levels at which (in)dependence structures
and constraints can be specified:

1) how marginal mass assignments mX ,mY are combined;
2) how, for each (i, j), i = 1, . . . , n; j = 1, . . . ,m, marginal

probability mass functions pijX , p
ij
Y are combined into pij ;

3) how for each (i, j), i = 1, . . . , n; j = 1, . . . ,m, marginal
probability mass functions pijX , p

ij
Y are selected.

Let us now summarise results previously obtained by Fetz [9] (proofs
are provided in his paper)

Proposition 1. Consider the two marginal probability sets PX ,PY

induced by mass assignments mX ,mY and the joint set PRI . The
set of joint probabilities built with the following constraints coincide
with the set PRI :

1) ∀i = 1, . . . , n; j = 1, . . . ,m, m(Ai×Bj) = mX(Ai)mY (Bj)
2) ∀i = 1, . . . , n; j = 1, . . . ,m, pij has marginal probability mass

functions pijX , p
ij
Y ;

3) ∀i = 1, . . . , n; j = 1, . . . ,m, pijX ∈ IAi , pijY ∈ IBj

Proposition 2. Consider the two marginal probability sets PX ,PY

induced by mass assignments mX ,mY and the joint set PSI . The
set of joint probabilities built with the following constraints coincide
with the set PSI :

1) ∀Ai × Bj , i = 1, . . . , n; j = 1, . . . ,m, m(Ai × Bj) =
mX(Ai)mY (Bj)

2) ∀i = 1, . . . , n; j = 1, . . . ,m, pij = pijX · p
ij
Y , i.e. pij is the

stochastic product of pijX , p
ij
Y ;

3) ∀i = 1, . . . , n; j = 1, . . . ,m, piX ∈ IAi , pjY ∈ IBj with

piX := pi1X = . . . = pimX (2)

pjY := p1jY = . . . = pnj
X (3)

Note that logical constraints (2) and (3) on the probability mass
functions selected in focal sets are essential to retrieve PSI . Without
them, the obtained probability set is PRI .

B. Epistemic irrelevance

Let us now focus on the concept of epistemic irrelevance. Without
loss of generality, we assume that variable Y is epistemically irrele-
vant to variable X . We now show that results recalled in the previous
section can easily be extended to the case of epistemic irrelevance.

Proposition 3. Consider the two marginal probability sets PX ,PY

induced by mass assignments mX ,mY and the joint set PY 6→X . The
set of joint probabilities built with the following constraints coincide
with the set PY 6→X :

1) ∀Ai × Bj , i = 1, . . . , n; j = 1, . . . ,m, mX(Ai × Bj) =
mX(Ai)mY (Bj)

2) ∀i = 1, . . . , n; j = 1, . . . ,m, pij ∈ IAi×Bj ;
3) ∀i = 1, . . . , n; j = 1, . . . ,m and y ∈ Y , piX (·|y) ∈ IAi ,
pjY ∈ IBj with

piX (·|y) := pi1X (·|y) = . . . = pimX (·|y) (4)

pjY := p1jY = . . . = pnj
X (5)

But we can have piX (·|y) 6= piX (·|y′) for y 6= y′

Proof: Let us first show that the set described by the constraints
includes PY 6→X . Consider a probability mass function p that is in
PY 6→X . For any couple (x, y) ∈ X × Y , p(x, y) = pX (x|y)pY(y),
with pX (·|y) ∈ PX and pY ∈ PY . Using the relation (1), p(x, y)
can be rewritten as

p(x, y) =

n∑
i=1

m(Ai)p
i
X (x|y)

m∑
j=1

m(Bj)p
j
Y(y) (6)

with piX (x|y) ∈ IAi and pjY(y) ∈ IBj . This probability satisfy
constraints of Proposition 3, hence the set described by constraints
of Proposition 3 includes PY 6→X .

Let us now show that PY 6→X includes all probabilities that could
be built with the specified constraints. Consider a generic probability
mass function p built from marginal mass functions in PX ,PY , such
that, for any x, y ∈ X × Y

p(x, y) =

n∑
j=1

m∑
i=1

m(Ai ×Bj)p
ij(x, y)

with pij ∈ IAi×Bj . Now, the two first constraints and conditions (4)
and (5) of Proposition 3 means that we can rewrite p(x, y) as

p(x, y) =

n∑
j=1

m∑
i=1

m(Ai)m(Bj)p
i
X (x|y) · pjY(y) (7)

=

n∑
j=1

m(Bj) · pjY(y)
m∑
i=1

m(Ai)p
i
X (x|y), (8)

Which, being equivalent to Eq. (6), shows that the probability masses
built from the specified constraints are indeed in PY 6→X . Therefore,
the two sets coincide.

Note that, if we consider piX (·|y) to be the same for all y ∈ Y ,
we retrieve the constraints (2) and (3). Also, simply dropping the
third condition gives the joint probability set induced by random
set independence. Note that, as for strong independence [3], we can
expect some specific joint probability masses inside PY 6→X to be
reachable by other combination of focal set weights and marginal
probabilities inside each focal sets. However, our aim here is to
describe constraints needed to retrieve exactly all probability masses
in PY 6→X .

Extreme points of PY 6→X are reached by taking Dirac measures
for piX (·|y), pjY on each focal sets. Joint probabilities are then convex
mixtures of Dirac measures where the weights given to the Dirac
measures are respectively m(Ai) and m(Bj). Lower expectation for
a given real-valued bounded function f can therefore be written as
the solution of the following optimisation problem:

E(f) = min

n∑
j=1

m∑
i=1

f(xi, yj)m(Ai)m(Bj)δxi,yj
· δyj

with the constraints

for j = 1, . . . ,m, yj ∈ Bj

for i = 1, . . . , n; y ∈ Y xi,y ∈ Aj



wih δyj and δxi,y dirac measures respectively on yj and xi,y .
Upper expectation can be obtained by replacing the minimum by
a maximum in the objective function.

The next example, inspired from Couso [3] and using the classical
urn example, shows that constraints (4) and (5) are necessary to
retrieve the probabilistic set corresponding to epistemic irrelevance.

Example 1. Consider two urns X and Y , each of them with 10
balls either painted red, white, or unpainted (to be painted either
in white or red). The first urn has four red, two white and four
unpainted balls. The second one has two red, three white and five
unpainted balls. We have X = {r, w} = Y = {r, w}, focal elements
FX = {A1 = {r}, A2 = {w}, A3 = {r, w}} and FY = {B1 =
{r}, B2 = {w}, B3 = {r, w}}. Mass assignments for the random
selection of balls in the urn are the following:

mX(A1) = 0.4 mX(A2) = 0.2 mX(A3) = 0.4

mY (B1) = 0.2 mY (B2) = 0.3 mY (B3) = 0.5

From Proposition 3, epistemic irrelevance between PX and PY is
retrieved by the following set-up. One ball is selected stochastically
from each urns. If the ball from the second urn is uncoloured, it is
painted by a fixed random process. If the ball coming from the first
urn is uncoloured, then it is coloured by a random process whose
characteristics may depend on the colour of the ball drawn from
the second urn, independently of how this second colour has been
obtained (i.e. by drawing directly a painted ball or by painting an
uncoloured one).

As we have recalled, extreme points of PY 6→X can be reached by
considering Dirac measures on each focal element and then taking
the convex mixture of these measures. For example, a first extreme
point can be reached by choosing p3Y(w) = 1, p3X (w|r) = 1 and
p3X (r|w) = 1. Considering the element {r, w} ∈ X × Y and the
combination of focal elements for which Dirac measures concentrate
on {r, w}, this gives

p({r, r}) = mX(A1)mY (B2) +mX(A1)mY (B3)p
3
Y(w)

+mX(A3)p
3
X (r|w)mY (B3)p

3
Y(w)

+mX(A3)p
3
X (r|w)mY (B2) = 0.64.

The same calculation for each element of X ×Y provides an extreme
points of PY 6→X . Considering every combination of Dirac measures
gives all extreme points of PY 6→X (and possibly other points inside
PY 6→X ). The following tabular specify all extreme points of the
probability set PY 6→X . Example detailed above for {r, w} is the
fifth probability mass function

no p({r, r}) p({r, w}) p({w, r}) p({w,w})
1 0.08 0.32 0.12 0.48
2 0.28 0.12 0.42 0.18
3 0.16 0.64 0.04 0.16
4 0.56 0.24 0.14 0.06
5 0.08 0.64 0.12 0.16
6 0.16 0.24 0.04 0.56
7 0.28 0.24 0.42 0.06
8 0.56 0.12 0.14 0.18

PSI (which is included in PY 6→X ) is retrieved when taking the convex
hull of the four first probability mass functions. PY 6→X is the convex
hull of all eight probability mass functions. Now, assume that we
drop constraints (4) and (5) in Proposition 3, and that we consider
the following selection: p33X (r|w) = 1, p33X (w|r) = 1, p32X (r|w) = 1,

p31X (w|r) = 1, p13Y (r) = 1, p33Y (w) = p23Y (w) = 1. The probability
mass function resulting from such a choice is

p({r, r}) = 0.28 p({r, w}) = 0.32

p({r, r}) = 0.12 p({r, w}) = 0.28

and it is not in PY 6→X (i.e. it cannot be formulated as a convex
combination of the eight extreme points of PY 6→X )

C. Interpreting epistemic irrelevance

Setting aside the practical aspect of interpreting independence
concepts in evidence theory (i.e. the possibility to use specific
optimisation problems), let us now focus on the interpretation we
can give to these results.

The conditions of Propositions 2 and 3 are easier to interpret
if a mass assignment mX is associated to a so-called hierarchical
model [7], where the mass assignment is the second-order precise
probabilistic model, modelling our uncertainty about the characteris-
tics of the first order model, here reduced to vacuous (i.e. completely
imprecise) models IA1 , . . . , IAm corresponding to focal sets. This
corresponds to cases where there is a "correct" first order model,
but we are unsure about what is it. Couso [3] relates this model to
random sets and interpret m as an observational process and focal
sets as possible selections for the variables. In Shafer’s view [14], the
mass assignment describe our uncertainty about what is our actual
knowledge about the variable, this knowledge being in the form
X ∈ A. De Cooman [7] provides yet other interpretations, and shows
that such second-order models can be transformed into equivalent
first-order models (at least from a behavioural viewpoint). Actually,
interpreting a mass assignment m as a probability set P(Bel) is such
a transformation.

Independence concepts can be reinterpreted with this particular
view. For instance, taking the mass assignments product can be
interpreted as an assumption of independence between second-order
models. It can be independence in the observational process or
between the sources (depending on the particular interpretation given
to m). Whether we interpret this independence as a stochastic or as
an epistemic concept does not formally matter, since the model is
precise.

Now, condition 2 and constraints (2),(3) of Proposition 2 indicate
that strong independence corresponds to the assumptions (1) that
the first order model for each variable is a precise model, whose
probability mass function is unknown and depend only of the con-
sidered variable and (2) that the joint uncertainty of these first-order
model is described by the product of marginal probabilities. This can
translate the fact that the two variables X and Y follow random and
stochastically independent processes, or that the agent is forced to
select precise models at the first order. This is well in accordance
with a step-wise application at the second- and first-order levels
of the strong independence concept, which makes the assumption
that imprecise probabilities model our incomplete knowledge about
a precise probability.

Similarly, constraints (4) and (5) of Proposition 3 indicate that
epistemic irrelevance corresponds to the assumptions that the first-
order models for the conditional uncertainty about the value of
X given Y and for Y are unique precise (yet unknown) models.
Contrary to the case of strong independence, these constraints ap-
pear to be surprising. Indeed, the classical assumption of epistemic
irrelevance [16, Ch. 9] makes no reference to an underlying precise
probability that is only partially known. Therefore, it is hard to
interpret condition 1 and constraints (4), (5) of Proposition 3 as a



step-wise application at the second- and first-order level of epistemic
irrelevance. Constraints (4),(5) are therefore questionable, if classical
epistemic irrelevance is to be applied between first order models
IA1 , . . . , IAm and IB1 , . . . , IBn .

An intereesting remark is that, if one drops constraints (4) and
(5) of Proposition 3 (applying classical epistemic irrelevance for
each combination of focal sets), the obtained probability set would
coincide with the one obtained with an assumption of random
set independence. This view could then provide some theoretical
justification to the use of random set independence, even in the case
of imprecise probability theory.

D. Taking one step further: imprecise belief functions

To settle this work in the more general context of generic second-
order uncertainty models, the next step is to consider imprecise
belief functions. In this setting, uncertainty about X and Y are no
longer modelled by single mass assignments but by convex sets
MX and MY of mass assignments. MX and MY focal sets
FX = {A1, . . . , Am} and FY = {B1, . . . , Bn} are the sets to
which at least one mass assignment in MX and MY assign strictly
positive mass. If imprecise belief functions as uncertainty models
have already been discussed by different authors [1], [8], [11], they
have not considered the problems of independence assessments and
of joint models construction for such models.

Given a set of mass assignment MX , Augustin [1] has shown
that we can come back to a first order probability set P(MX) by
considering the following set:

P(MX) = {
∑

Ai∈FX

m(Ai)p
i|m ∈MX , p

i ∈ IAi}, (9)

This means that any probability mass function in P(MX) or
P(MY ) can be built by picking a mass assignment resp. in MX

or MY and probability mass functions resp. inside IA1 , . . . , IAm

or IB1 , . . . , IBn . Therefore, any joint probability mass function on
X ×Y having marginals in P(MX) or P(MY ) can be built in the
same way as for precise mass assignments. Augustin [1] have also
shown that imprecise mass assignments could model any first-order
probability set P . This means that the scope of the present (short)
study goes beyond the simple framework of evidence theory, and also
concerns to some extent generic imprecise probabilities.

As in the previous sections, we can now consider the joint probabil-
ity set resulting from an independence assumption between marginal
sets P(MX) and P(MY ), and search under which conditions it
is equivalent to first separately build joint sets over X × Y for
second-order and first-order models, and then to consider the obtained
equivalent first-order model. For example, the set PSI resulting from
a strong independence assumption between P(MX) and P(MY ) is

PSI = {p ∈ PX×Y |∀x, y ∈ X × Y, p(x, y) = pX (x)pY(y),

pX ∈ P(MX), pY ∈ P(MY )}.

Again, if we want to relate this independence concept and this joint
set with imprecise belief functions, there are three levels at which
(in)dependence structures and constraints can be specified. Extending
proposition 2, we can show that:

Proposition 4. Consider the two marginal probability sets
P(MX),P(MY ) induced by mass assignment sets MX ,MY and
the joint set PSI . The set of joint probabilities built with the following
constraints coincide with the set PSI :

1) ∀Ai × Bj , i = 1, . . . , n; j = 1, . . . ,m, m(Ai × Bj) =
mX(Ai)mY (Bj) with mX ∈MX and mY ∈MY

2) ∀i = 1, . . . , n; j = 1, . . . ,m, pij = pijX · p
ij
Y , i.e. pij is the

stochastic product of pijX , p
ij
Y ;

3) ∀i = 1, . . . , n; j = 1, . . . ,m, piX ∈ IAi , pjY ∈ IBj with

piX := pi1X = . . . = pimX (10)

pjY := p1jY = . . . = pnj
X (11)

Proof: Let us first show that the described set includes all
probabilities inside PSI . Any probability mass function in PSI can
be decomposed into the products of two marginals, which by Eq. (9)
can be rewritten, for any (x, y) ∈ X × X , as

p(x, y) =
∑
x∈Ai

mX(Ai)p
i
∑
y∈Bj

mY (Bj)p
j(y),

with mX ,mY inMX ,MY and pi, pj in IAi , IBj . Such decompo-
sitions are indeed included in the constraints described in Prop. 4

Let us now show that any joint probability obtained through
constraints of Proposition 4 is included in PSI . First, consider the
fact that any joint probability having marginals in P(MX),P(MY )
can be written as

p(x, y) =

m∑
j=1

n∑
i=1

m(Ai ×Bj)p
ij(x, y),

with m a joint mass assignment having marginals inMX andMY ,
and pij ∈ IAi ×IBi . If constraints of Proposition 4 are satisfied, we
have

p(x, y) =

m∑
i=1

n∑
i=1

mX(Ai)mY (Bj)p
i(x)pj(y) (12)

=

m∑
i=1

mX(Ai)p
i(x)

n∑
j=1

mY (Bj)p
j(y), (13)

by Eq. (9),
∑m

i=1mX(Ai)p
i ∈ P(MX) and

∑n
j=1mY (Bj)p

j ∈
P(MY ), therefore any probability satisfying constraints of Proposi-
tion 4 is in PSI . This shows that the two sets coincide.

Again, it may be the case that some joint probabilities in PSI can
be retrieved by combinations of mass assignments and probabilities
on focal sets that do not form a decomposable probability. This
result indicates that there should be no major problems in formally
extending classical independence concepts to hierarchical models (at
least limited to second-order) such as probability sets describing our
uncertainty about which probability sets is the "correct" right first-
order models. The results also indicates that, at least for strong inde-
pendence, it is assumed that both second- and first-order probabilities
are combined by taking the stochastic product, therefore assuming
that there is a precise yet imprecisely known model at both levels.
Such precise model could correspond to the hypothesis that variable
values follow a random process or that we are forced to pick a precise
model and then to consider the product combination.

Indeed, constraints in Proposition 4 shows that to extend strong
independence to imprecise belief functions, sets of mass assignments
should themselves be combined by assuming strong independence
between them (i.e. taking the products of every mass functions
in MX and MY ). This comes down to assume that there are
"ideal" but unknown precise mass assignments in MX and MY ,
and that they are (stochastically) independent. Such an assumption
can be questioned, especially ifMX andMY describe the subjective
uncertainty of some agent (expert,. . . ). Indeed, one of the main
motivation for lower previsions, possibility theory, the transferable
belief models and other imprecise probability theories is that not all
belief states can and should be modelled by precise probabilities.



This shows that one has to be careful when modelling joint models
when marginal models are hierarchical models, and cannot just
apply classical independence concepts to equivalent first-order models
without paying close attention to interpretation issues.

IV. CONCLUSION

In this paper, we have extended some previous results obtained
by Fetz and Couso concerning independence concepts and their
interpretation in evidence theory. We have considered the concept
of epistemic irrelevance and the case where belief functions are
imprecise. In both cases, our results show that formal extensions
can be easily obtained and that classical independence concepts of
imprecise probability theory can be reinterpreted in the framework
of evidence theory.

However, interpretations that can be associated to these results are
at the very least questionable. Indeed, extensions studied in this paper
implicitly assume the existence of a precise, yet ill-known, probability
distribution describing our uncertainty about the value assumed by
a variable or about the first-order model describing our knowledge
about this variable. If assuming the existence of such precise models
is justified when uncertainty describe a random process, such an
assumption is less convincing when modelling the belief of an agent.
It is interesting to note that, if one interprets a mass assignment as
a hierarchical model where the second-order model is precise, and
if one drops the assumption that there exists a precise but unknown
probability describing our (first-order) uncertainty, then considering
independence at every level corresponds to the notion of random set
independence.

There are two directions in which this work could be extended to
encompass other models considered in the litterature:

1) relax the assumption that mass assignments bear on crisp sets,
and consider the case where "focal sets" are generic probability
sets, possibly having specific properties. Such models encom-
pass, for example, fuzzy random variables [5], [13], that have
been studied by many in the literature. Extending the current
work in this direction would then provide insight about how
independence can be handled with such fuzzy random variables.

2) consider generic hierarchical models, where both second-order
and first-order models are probability sets. Note that De
Cooman [7] shows that for a broad class of such models and
from a behavioural point of view, there is an imprecision-
precision equivalence, i.e. decisions made by an agent remain the
same whether the first-order level model is precise or imprecise.
However, results recalled and obtained in this paper suggests
that a similar equivalence is unlikely to hold for structural
judgements concerning the same hierarchical models.
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