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Abstract— When multiple sources provide information about
the same unknown quantity, their fusion into a synthetic
interpretable message is often a tedious problem, especially
when sources are conflicting. In this paper, we propose to use
possibility theory and the notion of maximal coherent subsets,
often used in logic-based representations, to build a fuzzy belief
structure that will be instrumental both for extracting useful
information about various features of the information conveyed
by the sources and for compressing this information into a
unique possibility distribution.

I. INTRODUCTION

When multiple sources deliver information tainted with
uncertainty about some unknown quantity, aggregating this
information can be a tedious task, especially when infor-
mation is conflicting. This problem was first addressed in
the framework of probability theory, and still constitutes an
active area of research (see [1] for a recent review).

Some shortcomings of probabilistic methods are empha-
sized in [2], where it is shown that probabilistic methods tend
to confuse randomness with imprecision. The shortcomings
of the arithmetic mean (the most used and founded fusion
operator for probabilities) are also discussed. Namely it tends
to suggest, as being plausible, values none of the sources
considered possible.

An alternative approach is to consider other theories of
uncertainty, such as imprecise probabilities [3], evidence
theory [4] or possibility theory [5]. These theories allow
to faithfully model incomplete or imprecise data, a feature
that probability theory arguably cannot account for. When
it comes to aggregating data from multiple sources, these
theories possess far more flexibility in the treatment of
conflicting information, mainly due to the flexible use of
set-operations (conjunction and disjunction ).

In this paper, we will focus on uncertainty modeled by
possibility distributions, for they can be easily elicited and
interpreted as collection of confidence intervals, and are
attractive from a computational viewpoint. On the other hand,
possibility distributions can be judged not expressive enough
in regard with available information (other theories should
then be used).

Many fusion rules have been proposed to aggregate
conflicting possibility distributions, using combinations of
conjunction and disjunction operations, possibly exploiting
external data (e.g. reliability of sources); see [6] for review.
Most of these propositions result in one final possibility
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distribution built from the original ones provided by the
sources. In this paper, we explore a fusion method based
on maximal coherent subsets (an intuitive way of fusing
information inspired from methods that handle inconsistency
in logic [7]). However because we merge fuzzy information,
the result will be a fuzzy belief structure.

After some preliminaries introduced in section II, sec-
tion III explains how maximal coherent subsets are applied
to obtain the fuzzy belief structure. section IV then presents
some means to extract information from this structure. Fi-
nally, section V deals with the problem of getting one final
possibility distribution.

II. PRELIMINARIES

A. Possibility theory

A possibility distribution π(x) is a mapping from a space
X to [0, 1] and is formally equivalent to a fuzzy membership
function µ s.t. µ(x) = π(x). One can interpret a possibility
distribution on the real line as a set of nested confidence
intervals [9]. From a possibility distribution, possibility and
necessity measures are respectively defined as :

Π(A) = sup
x∈A

π(x)

N(A) = 1−Π(Ac)

Where Ac stands for the complement of A.A possibility
degree Π(A) quantifies to what extent the event A is plausi-
ble, while the necessity degree quantifies the certainty of A.
These measures can sometimes be interpreted as probability
bounds

An α-cut Eα of the distribution π is defined as the set

Eα = {x|π(x) ≥ α}

The core c(π) and the support s(π) of π respectively
correspond to E1 and limε→0E

ε

B. Fuzzy belief structure

A belief structure consists of a mapping m from subsets
of a space X to [0, 1] s.t.

∑
E⊆X m(E) = 1,m(E) ≥ 0

and m(∅) = 0. Sets E that have positive mass are called
focal sets. From this mapping, we can again define two set-
functions, the plausibility and belief functions, which read
[4]:

Bel(A) =
∑

E,E⊆A

m(E)

Pl(A) =
∑

E,E∩A

m(E) = 1−Bel(Ac)

where the belief function quantifies the amount of informa-
tion that surely supports A, and the plausibility reflects the



amount of information that potentially supports A. When
focal sets are nested, a belief structure is equivalent to a
possibility distribution, and the belief (plausibility) function
is also a necessity (possibility) measure. In this model the
mass m(E) should be interpreted as the probability of only
knowing that the unknown quantity lies in E.

Zadeh [10] was the first to propose an extension of belief
structures when focal sets are fuzzy sets. Here, we will note
these fuzzy sets Fi. Since then, many proposals appeared that
extend plausibility and belief functions when focal elements
also are fuzzy (see, for example [11], [12]). In this paper,
we retain Yen’s [13] definition, which, in the discrete case,
reads:

Plm(A) =

n∑
i=1

m(Fi)
∑
αj

(αj − αj−1) max
w∈F

αj

i

µA(w) (1)

Belm(A) =
n∑

i=1

m(Fi)
∑
αj

(αj − αj−1) min
w∈F

αj

i

µA(w) (2)

with 0 ≤ α1 < . . . < αj < . . . ≤ 1 and where Fαj
i is the αj-

cut of the fuzzy focal element Fi. The reason of choosing
this generalization rather than another one is that the part
involving fuzzy sets Fi in equations (1) and (2) is equivalent
to computing the Choquet integral [14] of the (possibly
fuzzy) event A over the possibility distribution πi = µFi . We
thus use linear operators in every part of the equation, which
seems to us more coherent than using a mixing of linear
operators and maximum/minimum based operators. Let us
also notice that Yen’s approach is a generalization of Smet’s
definition [15]. Although Yen’s work is not based on these
two considerations, but rather on optimization criteria, it is
interesting to underly the fact that this generalization of belief
structure to fuzzy focal sets has theoretical justifications. In
fact, it comes down to reducing a random fuzzy set to a
random set where each cut Fαj

i has mass m(Fi)(αj−αj−1)
[16].

C. Problem statement and illustration

In this paper, we will consider a set of n sources, each of
them providing a possibility distribution πi as their evaluation
of an unknown quantity x ∈ X . We will then use maximal
coherent subsets to summarize the information and then work
on the resulting structure.

To illustrate our purpose, consider the following example :
four sources (experts, computer code, sensor, . . . ) all provide
information in term of a best-estimate and a conservative
interval, and the possibility distributions are supposed to have
trapezoidal shapes. The information, represented in figure 1,
is summarized in table I.

III. MAXIMAL COHERENT SUBSETS METHOD

When no information is available about the sources relia-
bility, and when these sources are conflicting, a reasonable
fusion method should take account of the information pro-
vided by all sources (i.e. without discarding any). At the same

TABLE I
EXAMPLE INFORMATION FROM SOURCES

Source Conservative interval Best estimate
1 [1,5] [2,4]
2 [1,13] [3,6]
3 [3,11] [7]
4 [5,13] [10,12]
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Fig. 1. Example graphical representation

time, it should try to gain a maximum of informativeness. Us-
ing the notion of maximal coherent subsets is a natural way to
achieve these two goals. It consists of applying a conjunctive
operator inside non-conflicting subsets of sources, and then
to use a disjunctive operators between all these subsets [7].
We thus gain as much precision as possible while remaining
in agreement with the information provided by every source.
We now explain in detail how we apply this approach to
possibility distributions on the real line.

A. Computing maximal coherent subsets of intervals

Let us first consider a set N = {1, . . . , n} of n intervals
Ii = [ai, bi]. Using the method of maximal coherent subsets
on these intervals comes down to finding every maximal
subset Kj ⊂ N s.t. ∩i∈Kj

Ii 6= ∅ and then to performing
the union of these partial results (i.e. ∪j ∩i∈Kj

Ii). An
algorithm 1, that finds maximal coherent subsets, was given
by Dubois et al. in [17]. Contrary to what happens in logic
(where the exhaustive search for maximal coherent subsets
of formulas is of exponential complexity), the algorithm 1 is
linear in the number of intervals, and thus computationally
efficient.

The algorithm is based on increasingly sorting the interval
ends into a sequence (ci)i=1,...,2n, and on the fact that each
time (and only then) ci is of type b (i.e. the end of an
interval), followed by ci+1 of type a (i.e. the beginning
of another interval), a maximally coherent intersection of
intervals is obtained. Figure 2 illustrates the situation for
α-cuts of level 0.5 of our example. Using algorithm 1, we
find two maximal coherent subsets : K1 = {I1, I2} and
K2 = {I2, I3, I4}. After applying the maximal coherent
subset method, the result is (I1 ∩ I2) ∪ (I2 ∩ I3 ∩ I4) =
[2, 4.5] ∪ [7.5, 9], as pictured in bold line on the figure.



Algorithm 1: Maximal coherent subsets of intervals
Input: n intervals
Output: List of m maximal coherent subsets Kj

List = ∅ ;
j=1 ;
K = ∅ ;
Order in an increasing order
{ai, i = 1, . . . , n} ∪ {bi, i = 1, . . . , n} ;
Rename them {ci, i = 1, . . . , 2n} with type(i) = a if
ci = ak and type(i) = b if ci = bk ;
for i = 1, . . . , 2n− 1 do

if type(i) = a then
Add Source k to K s.t. ci = ak ;
if type(i+ 1) = b then

Add K to List (Kj = K) ;
j = j + 1 ;

else
Remove Source k from K s.t. ci = bk ;
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Fig. 2. Maximal coherent subsets on Intervals (0.5 α-cuts of example)

B. Building the fuzzy belief structure

Let us come back to our n sources and their associated
possibility distributions πi supposed to be fuzzy intervals.
At each level α, the α-cuts form a set of n intervals Eα

i .
It is then possible to apply algorithm 1 to each of these
sets of intervals : Let Kα

j be the subsets of intervals s.t.⋂
i∈Kα

j
Eα

i 6= ∅. We then compute Eα the union of the
intersection of subsets Kα

j as proposed in [8] :

Eα =
⋃

j=1,...,n(α)

⋂
i∈Kα

j

Eα
i (3)

where n(α) is the number of subsets Kα
j of maximal con-

sistent intervals at a given level. In general, Eα is a union of
disjoint intervals, and we don’t have Eα ⊃ Eβ ∀β > α (i.e.
the result is not a possibility distribution, since α-cuts are not
nested). In practice, for trapezoidal fuzzy intervals, there will
be a finite set of values 0 = β1 ≤ . . . ≤ βk∗ ≤ βk∗+1 = 1 s.t.
the sets Eα will be nested for α ∈ (βk, βk+1]. Algorithm 2
offers a simple method to compute threshold values βk. It
simply computes the heights of min(πi, πj) for every pair
of possibility distributions πi, πj . Clearly, this value is the
value of the α-cut after which πi and πj won’t belong to the
same coherent subset anymore.

Algorithm 2: Values βk of fuzzy belief structure
Input: n possibility distributions πi

Output: List of values βk

List = ∅ ;
i=1 ;
for k = 1, . . . , n do

for l = k + 1, . . . , n do
βi = max(min(πk, πl)) ;
i=i+1 ;

Add βi to List ;
Order List by increasing order ;

If we apply equation (3) for α ∈ (βk, βk+1], we end up
with a non-normalized fuzzy set Fk with membership range
(βk, βk+1] (since sets Eα are nested in that range). We can
then normalize it (so as to have the range [0, 1]) by changing
µFk(x) into

max(µFk(x)− βk, 0)

βk+1 − βk

and assigning weight mi = βk+1 − βk to this fuzzy set.
By abuse of notation, we still denote Fk these normalized
fuzzy focal sets in the sequel. Overall, we built a fuzzy belief
structure (F ,m) with weights mi and associated normal
focal sets Fk. The weights mi can be interpreted as the
confidence that would be given to the representation Fk by
all the sources. Figure 3 gives an illustration of the result
(before normalization), on the example. We see that, if we
take the 0.5 α-cut, we find back the result of figure 2. The ob-
tained fuzzy belief structure is thus a coherent "fuzzification"
of the maximal coherent subset method used on classical
intervals. Let us note that if all sources agree at least on a
common value, the result is a single fuzzy focal set equivalent
to π(x) = mini=1,...,n πi(x) (usual conjunction). On the
contrary, if every pair of sources is in a situation of total
conflict (i.e. supx∈X min(πi, πj) = 0 ∀i 6= j), then the
result is a unique fuzzy focal set π(x) = maxi=1,...,n πi(x)
(usual disjunction). Clearly, these two cases are extreme
cases where one do not need complex mathematical tools
to analyze the information.

Once the fuzzy belief structure (F ,m) is computed, we
can interpret it as a good representation of the information
provided by the overall group of sources. Nevertheless, it can
be hard to draw conclusions or useful information directly
from it (see figure 3 to be convinced). In the following
section, we present various indices that can be useful to the
analyst.

IV. EXTRACTING INFORMATION

In this section, we present some indices or information
that can help in the analysis of the results obtained in the
previous section.

A. Finding groups of coherent sources

For each value in interval (βk, βk+1], applying algorithm 1
will give the same maximal coherent subsets K(βk,βk+1]

j of
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Fig. 3. Result of maximal coherent subset method on example (—) and
0.5 α-cut (- - -)

sources. We will thus have a finite collection of such subsets.
Moreover, by increasing the value of βk, we go from the
largest sets of agreeing sources (i.e. those for which the
supports of distributions πi intersect), to the smallest sets
of agreeing sources (i.e. those for which cores intersect).
Subsets K

(βk,βk+1]
j can be interpreted as the clusters of

sources that agree up to a confidence level βk+1.
Analyzing these clusters can give some information as to

which groups of sources are consistent, i.e. agree together
with a high confidence level ( possibly using some common
evidence to supply information) and which ones are strongly
conflicting with each other (and which items of information
are plausibly based on different pieces of evidence). The
groups in our example are summarized in the following table

Subsets Clusters Max. Conf. level
K(0,0.4] [1, 2, 3][2, 3, 4] 0.4
K(0.4,0.66] [1, 2][2, 3, 4] 0.66
K(0.66,0.91] [1, 2][2, 3][4] 0.91
K(0.91,1] [1, 2][3][4] 1.0

In our example, only few conclusions can be drawn from
the clusters, showing that, if this kind of summary can be
useful, it is not sufficient. Results show that some sources
are totally conflicting (since there is more than one subgroup
for in K(0,β1]), and that source 4 looks more isolated than
the three others (at a confidence level higher than 0.66,
it is strongly conflicting with all other sources). This type
of analysis can trigger further investigations on reasons for
conflict.

B. Measuring the gain in precision

We then propose an index that measures how much
precision is gained by applying maximal coherent subsets
method to a set of n possibility distributions. Let π∪ be the
disjunction s.t. π∪ = maxi=1,...,n πi. We consider that the
overall imprecision of the information provided by all the
sources is equal to

IP = |π∪| =

∫
X

π∪(x)dx

where |π∪| is the fuzzy cardinality of π∪, an extension of
the cardinality of an interval (the cardinality being a natural

candidate to measure imprecision). Once we have applied
the maximal coherent subset method, the imprecision of the
fuzzy belief function Beli can be measured as

IP ′ =
∑

mk|Fk|

(IP − IP ′)/IP is a normalized index that quantify the
precision gained between the two representations. This index
is equal to 0 in case of total conflict and converges to
1 as sources tend to fully agree on a single value (i.e.
∃!x s.t. πi(x) = 1 ∀i).

In our example, we have IP = 11.195, IP ′ = 5.412 and
the normalized index is 0.52, which indicates a reasonable
gain of precision after application of maximal coherent
subsets method. Note that IP ′/IP can also be interpreted
as a measure of global conflict between sources, since it is
maximum in case of total conflict and minimum in case of
total agreement on a single value.

C. Group confidence in an event, in a source

Since we consider the fuzzy belief structure (F ,m) re-
sulting from the maximal coherent subset method as a good
representative of the group of sources, plausibility and belief
functions of an event A can be interpreted respectively as
an upper and a lower confidence level given to A by the
sources. In particular, if A = πi, plausibility and belief can
be interpreted as upper and lower “trust” in the information
given by source i in view of all the sources.

In our example, values [Belm(πi), P lm(πi)] for sources 2
and 4 are, respectively, [0.38, 1] and [0, 0.93] (using equations
(2) and (1)). We see that information provided by the second
source is judged totally plausible by the group, and also
strongly supported (indeed, source 2 is undoubtedly the
less conflicting of the four). Because one source completely
disagrees with source 4, its belief value drops to zero, but
the information delivered by it is nevertheless judged fairly
plausible (since source 4 is not very conflicting with sources
2 and 3).

Belief and plausibility functions are natural candidates
to measure the overall confidence in a source, but their
informativeness can sometimes be judged too poor. Indeed, if
a distribution πi given by a source i is in total conflict with
the others, the resulting fuzzy belief structure (F ,m) will
give the following measures for πi : [Belm(πi), P lm(πi)] =
[0, 1], a result that can’t be less informative. An alternative
would be to take the fuzzy equivalent of the so-called
pignistic probability, namely

BetP (A) =
∑

m(Fk)
|Fk ∩A|

|Fk|
(4)

where |Fk ∩A|/|Fk| is the degree of subsethood of Fk in A.
This pignistic probability is zero if A is strongly conflicting
with every focal set Fk and one if every Fk is included in
A (here, Fk is included in A iff µFk(x) < µA(x)∀x). In the
example, equation (4) applied to sources 2 and 4 respectively
gives confidence 0.80 and 0.49, confirming that source 2 is
more trusted by the group than source 4.



D. Measuring confusion

There are many proposals to extend Shannon’s or Hart-
ley’s like measures to belief functions (for a recent review,
see [18]). Since most of them only use focal sets masses,
plausibility and belief functions, they can be straightfor-
wardly extended to fuzzy belief structures (for measures that
use entropies on families of probabilities, extension is more
problematic). However, an interpretation of these measures
in term of source behavior is not always easy to give. In
this paper, we will restrict to a measure extensively studied
in [19], [20], for which we are able to give a meaningful
interpretation in term of sources.

The measure is called the measure of confusion, and reads

C(F ,m) =
∑
Fk

m(Fk)Bel(Fk) (5)

for fuzzy belief structures. For usual non-fuzzy belief struc-
tures, C(F ,m) reaches its maximum (1) when (F ,m) has
only one focal set that is a crisp interval, and its minimum
(0) if weights are uniformly distributed amongst a maximal
number of focal elements forming an antichain.

In our framework and in term of possibility distributions
given by sources, the maximum of C(F ,m) is reached if and
only if each πi is a crisp interval (i.e. sources give precise
bounds). As for the minimum, C(F ,m) is all the smaller as
:

1) the resulting fuzzy belief structure has more fuzzy focal
sets Fk

2) Weights are more uniformly distributed among ele-
ments Fk

3) There are more pairs of focal sets Fk, Fj j 6= i there
is a value x s.t. x ∈ c(Fj)→ x 6∈ s(Fk)

where c(Fk), s(Fk) are respectively the core and support of
the focal set Fk. The last constraint insures that the Choquet
integral will be zero in equation (2), except for Fk = Fj ,
which imply that Bel(Fk) will be minimal. This index is
a good way to measure confusion between sources, since it
increases as sources become fuzzy and as conflict levels are
uniformly distributed amongst pairs of sources.

Given the n sources supplying trapezoidal fuzzy intervals,
the maximal number of fuzzy focal sets resulting from our
method is n(n−1)

2 + 1. Moreover, we have that Bel(Fk) ≥
0.5m(Fk), due to the fuzziness of sets Fk. Hence, we have
that inf(C(F ,m)) = 0.5(n(n−1)

2 + 1)−2, a value that may
quickly vanish, even for a small number of sources (0.03
for 3 sources and 0.004 for 5 sources). In our example,
C(F ,m) = 0.164, suggesting a fairly confusing situation.
This result indicates that the information is very scattered,
and that some of the sources are perhaps considering different
issues (sensors focusing on different objects, some experts
having misunderstood the questions, . . . ). Let us notice that
this index of confusion has a different meaning from the
index of global conflict introduced above. In the case when
every source provides pairwise disjoint intervals, the index
of confusion will be minimal, while the global conflict will
be maximal.
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In our case, the fact that the measure of confusion men-
tioned above is not subadditive (an often heard objection),
nor simply additive, is not very annoying here, since we do
not need to decompose fuzzy belief structures nor to build
Cartesian products of them.

V. BUILDING A FINAL DISTRIBUTION

As seen in previous sections, the maximal coherent subset
method allows to extract useful information about sources
and their assessment of an unknown quantity. Nevertheless,
it can be hard to directly use the fuzzy belief structure
representation in practical problems (such as uncertainty
propagation through a mathematical model). In this case, a
method that derives a unique distribution from a fuzzy belief
structure (F ,m) is needed.

A natural candidate is to build the contour function of the
fuzzy belief structure

πc(x) = Pl(x), ∀x,

which boils down to computing the weighted arithmetic mean
of the membership functions of (normalized) fuzzy focal
sets Fk, the weight of Fk being equal to mk. One can then
normalize the resulting distribution πc and/or take its convex
hull if needed.

Figure 4 shows the contour function πc with the fuzzy
focal sets in the background. figure 5 shows the same
function, once it is normalized and convexified, together with
the original distributions in the background.

The final result is a bimodal distribution, with one mode
centered around value 8 and the other with a value of 4, this



last value being the most plausible. This is is so because
these areas are the only ones supported by three sources that
more or less agree together. We can expect that the true value
lies in one of these two areas, but it is hard to tell which one.
Indeed, in this case, one should either take the normalized
convex hull of πc as the final representation of the parameter
X , or find out the reason for the conflict (if feasible).

VI. CONCLUSIONS

We have outlined a method that use the notion of maximal
coherent subsets in the case where many sources express
their uncertainty in term of possibility distributions. This
method is simple (it can be applied without any additional
information, and only use linear operations) and the way it
summarizes information is intuitively attractive (maximal co-
herent subsets are implicitly used in our every day decisions).

We have proposed various ways to get useful informa-
tion from the result of this method. More specifically, we
concentrated on how to characterize the situation in term
of sources (which sources agree/disagree and to which level,
how to measure overall confusion, information gain or overall
confidence in one source or in a particular event). This kind
of information is useful to figure out where future efforts
should be spent (to find the causes of a conflict, or why a
set of sources provide the same information, . . . ).

We have also proposed some way to get a final distribution
coherent with the available information, using the fuzzy
belief structure resulting from our method. This allow the
decision maker to build a synthetic distribution, easy to
understand and to manipulate, which is a good representative
of the information delivered by the sources.

The method proposed here is intended to be generic, and
does not depend on the nature of sources. It uses a natural
logical approach to the fusion of inconsistent information
within a sound and efficient numerical framework. The IRSN
is planning to use this kind of methods to analyze information
resulting from BEMUSE [21], an international benchmark
concerning uncertainty analysis of thermal-hydraulic codes
in nuclear safety.

As mentioned above, the maximal coherent subset method
assumes that no specific information concerning the sources
are available, and is applicable in a symbolic framework as
well as on metric spaces (e.g. the real line). Of course, there
are cases where such information are available, or where the
metric should be taken into account. Thus, further work will
be to integrate in a meaningful way such information into
the fusion process, while keeping the idea of using maximal
coherent subsets.

Let us notice that, instead of considering the set of fuzzy
focal elements generated by our method, one could consider
a continuous belief function [22] with a uniform density
of weights distributed over α-cuts Fα

k . An interesting work
would be to compare the method presented here with calculi
made with this density.It is also necessary to compare the
results of this method with other ones designed to aggre-
gate conflicting possibility distributions (such as the ones

described in [23], [24]).
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