
Using the OLS algorithm to build interpretable rule bases: an
application to a depollution problem

Sebastien Destercke, Serge Guillaume and Brigitte Charnomordic

Abstract— One of the main advantages of fuzzy modeling
is the ability to yield interpretable results. Amongst these
modeling methods, the OLS algorithm is a mathematically
robust technique that allows to induce a fuzzy rule base from
a set of training data. It does so by using linear regression
to select the most important rules. However, the original OLS
algorithm only relies upon numerical accuracy, and doesn’t
take interpretability matters into account. Thus, we propose
some modifications to the original method so that it builds
interpretable rule bases.

I. INTRODUCTION

Unlike "black-box" models (e.g. neural networks), fuzzy
modeling techniques are likely to give interpretable results,
provided that some constraints are respected. This feature of
fuzzy models is a real asset in domains where human un-
derstanding of processes is essential (e.g. climate evolution,
biological industry).

This explains why interpretability issues in fuzzy modeling
have deserved special attention in the literature [1]. It is
commonly accepted that interpretability requires a small
number of consistent membership functions for each input
and a reasonable number of rules in the fuzzy system.

On the other hand, efficient and robust numerical methods
are needed to deal with large amount of data. The OLS
algorithm, a particular case of more general techniques using
orthogonal transformation [2], is among such methods. Given
input membership functions, the OLS algorithm selects the
most important rules by using linear regression techniques.
However, the original OLS algorithm was designed on accu-
racy criteria, without taking account of interpretability.

In this paper, we propose some modifications to make
the OLS algorithm bring on interpretable rule bases, without
suffering too much loss of accuracy. After a brief reminder
of the original method in section II, these proposals and their
application to benchmark problems are developed in sections
III and IV. Finally, section V shows an application of the
algorithm to a real-world fault detection depollution problem.

II. ORIGINAL OLS ALGORITHM

After introducing some notations, we recall how the orig-
inal algorithm works.

Sebastien Destercke is with the Institute of Radiological Pro-
tection and Nuclear Safety (IRSN), Cadarache, France (email: se-
bastien.destercke@irsn.fr).

Serge Guillaume is with the Cemagref, Umr Itap, BP 5095, 34196 Mont-
pellier Cedex, France (email: serge.guillaume@montpellier.cemagref.fr).

Brigitte Charnomordic is with the INRA, Umr ASB, 2 place Viala, 34060
Montpellier Cedex, France (email: bch@ensam.inra.fr)

A. Notations

We write a zero order Takagi Sugeno model as a set of r
fuzzy rules such as:

if x1 is Aq
1

and x2 is Aq
2

and . . . then y = θq

where q is the rule number, Aq
1
, Aq

2
. . . the fuzzy sets asso-

ciated to the x1, x2, . . . variables for that rule and θq is the
corresponding crisp conclusion.

(x, y) denote N input-output pairs of a data set, where
x ∈ R

p and y ∈ R. The zero order Takagi Sugeno model
output for the ith pair can then be written as follows:

ŷi =

r∑
q=1

θq

(
p∧
j=1

µAq
j
(xij)

)

r∑
q=1

(
p∧
j=1

µAq
j
(xij)

) i = 1, . . . , N

where µAq
j
(xij) is the membership function value of xij in the

qth rule, and
∧

the conjunction operator used to combine rule
premise elements. In the sequel,

∧
µAq

j
(xij) is called the rule

standardized firing strength and is noted wq(xi), the previous
equation then becomes

ŷi =

r∑
q=1

θqwq(xi)

r∑
q=1

wq(xi)
(1)

B. Original algorithm

In the original algorithm [3], N rules are first built from
the samples (one for each pair in the data set). Hohensohn
and Mendel [4] proposed the following Gaussian member-
ship functions:

µAi
j
(u) = e

"

−
1
2

„

(u−xi
j
)

σj

«2
#

(2)

for the jth dimension of the ith rule, with the optimal value
of σj depending on the problem at hand.

Once these membership functions have been built, a first
step consist of mapping input variables into a linear space, by
using fuzzy basis functions (FBF) [3]. Given the membership
functions, a FBF pi(xi) is the relative contribution of the ith
rule, built from the ith example, to the inferred output:

pi(xi) =
wi(xi)
N∑
q=1

wq(xi)

After the inputs have been mapped by FBF, equation (1)
can be written ŷi =

∑
q

pq(xi) θq, where the only unknown

value, at this stage, is θq . Thus, we have a linear combination,
and the rule conclusions (θq) are the parameters to optimize.
The overall system can be rewritten in the matrix form

y = Pθ + E

where y is the true system output, P is a matrix where the
column i is the FBF pi(x), θ are the parameters to optimize,
and E is an error matrix, supposed to be uncorrelated with
P . Let us note that the element pji of the matrix P represents
the ith rule firing strength for the jth pair.

We thus have a linear form, to which an orthogonal
least square can be applied. P is decomposed by a Gram-
Schmidt procedure into an orthogonal matrix M and an upper
triangular matrix A. The system then becomes

y = MAθ + E

If we write g = Aθ, then the orthogonal least square solution
of this system is

ĝi =
mT
i y

mT
i mi

, 1 ≤ i ≤ r

where mi is the ith column of the orthogonal matrix M .
Optimal θ̂ is then computed from ĝ.

Thanks to the orthogonal nature of M (i.e. no covariance),
each individual vector (i.e. rule) contribution to the explained
variance of the observed output can be computed. At each
iteration, the algorithm selects the vector mi that maximizes
the explained variance (i.e. the most important rule not
already selected). The explained variance, which is also the
selection criterion, is computed as follows:

[xV ar]i =
g2

i m
T
i mi

yT y

and the rule selection stops when the cumulated explained

variance (
r∑
i=1

[xV ar]i) reaches a satisfactory level ε (typically,

0.99).
On completion of the selection procedure, selected mi still

contain some information about the unselected rules. Also,
Hohensohn and Mendel [4] propose to re-run the algorithm,
but only with the optimization phase (no selection is done
during this phase).

The OLS algorithm, as described here, is numerically
efficient, but has many drawbacks when one also wants
interpretable results with the aim of knowledge extraction.

III. REQUIREMENTS FOR BUILDING AND ANALYZING
INTERPRETABLE RULE BASES

This section presents the requirement for results to be
interpretable and which criteria we use to analyze a given
rule base.

A. Requirements for interpretability

A first requirement for fuzzy rule bases to be interpretable
is a system with a reasonable number of rules. This re-
quirement is already fulfilled by the OLS algorithm, which
consists of selecting a limited number of rules. Moreover, if
one accepts to lower the numerical accuracy, the stopping
criterion can be related to the number of selected rules,
instead of a cumulated explained variance.

A second requirement is to use interpretable membership
functions as input fuzzy sets [5]. The necessary conditions
for the membership functions to be interpretable have been
studied by many authors in the past (see, e.g. [6]), and can be
achieved by the use of standardized fuzzy partitions, defined
as follows:

{
∀x

∑
f=1,2,...,M

µf (x) = 1

∀f ∃ x such as µf (x) = 1
(3)

where M is the number of fuzzy sets in the partition and
µf (x) is the membership degree of x to the fth fuzzy set.
Equation 3 means that any point belongs at most to two fuzzy
sets when the fuzzy sets are convex. A standardized fuzzy
partition is shown on Figure3(b).

The last requirement is to impose a small number of
distinct output value in the zero order Takagi Sugeno system.

B. Evaluation Criteria

We first introduce what we call the coverage index, pa-
rameterized by an activation threshold. As shown below, we
use this criterion as a practical tool, both to measure the
robustness of the system and to evaluate the reliability of the
rule base with respect to the data.

Let Ii be the interval corresponding to the ith input range
and Ip ⊆ I1 × . . . × Ip be the subset of R

p covered by the
rule base (I1 × . . .× Ip is the Cartesian product).

Definition 1: An activation threshold α ∈ [0, 1] defines
the following constraint: given α, a sample xi is said active
iff there’s a rule in the rule base s.t. wq(xi) > α.

Definition 2: Let n be the number of active samples. The
coverage index CIα = n/N is the proportion of active
samples for the activation threshold α.

Input 2

Input 12 31

1

2

3

IF input 1 IS 2 AND IF input 2 IS 1

IF input 1 IS 1 AND IF input 2 IS 2

x99

x1,...,34

x35,...,50

x68,...,100

x51,...,67

Fig. 1. Input domain rule coverage

Figures 1 and 2 illustrate coverage indices on a toy
example. We see that increasing the activation threshold can
induce an important decrease in the coverage index. For

Input 1

Input 2

2 3

1

2

3

1

x35,...,50

x51,...,67

x99

x1,...,34

x68,...,100

No threshold (Ip)
0.1 threshold (Ip

0.1
)

Fig. 2. Input domain rule coverage with α = 0.1

instance, here CI drops from 0.99 to 0.70 if the activation
threshold increases by 0.1. Using the coverage index gives
indications as to:

• Exception data: a CIα ≈ 1 is often the consequence
of isolated samples not covered by the rule base. Their
detection is facilitated by the use of CI ,

• System robustness and knowledge reliability: sensitivity
of CIα to α is a way to measure system robustness to
small changes. A fast decreasing CIα when increasing
α indicates that at least some of the rules are not really
representative of the data, and thus of the system. The
reliability of the knowledge represented by such rules
is questionable.

From our point of view, the advantage of the coverage
index is that it allows a quick and easy first analysis of the
rule base that provides useful information.

To measure the numerical accuracy of our systems, and
thus their predictive capacity, we use the following mean
error index :

PI =
1

n

√√√√
n∑

i=1

∥∥∥ŷi − yi
∥∥∥

2

IV. PROPOSED MODIFICATIONS

After describing the changes made to the original method,
we compare the modified and original OLS on two bench-
mark problems.

A. Proposed modifications

From an interpretability standpoint, the OLS algorithm
has two main drawbacks: too many input fuzzy membership
functions and distinct rule conclusions. We thus propose two
changes:

• Building and using interpretable membership functions
in the selection and the least-square optimization steps,

• Reducing the number of distinct output values by a
clustering process.

Figure 3(a) shows membership functions generated by the
original algorithm. The result is clearly not interpretable.
Some membership functions are quasi-redundant and many
fuzzy sets are not distinguishable. The unlimited boundary
feature of Gaussian functions is here a disadvantage: it yields
CI0 = 1, even if there’s only one rule, but this perfect
coverage index is likely to drop as soon as α will increase.

Due to their properties [7], we choose to build standardized
partitions with triangular fuzzy sets (except at the domain
edges, where we build semi-trapezoidal fuzzy sets). Such
a M-term standardized fuzzy partition is totally defined by
M values, corresponding to the fuzzy set centers. Figure 3.b
shows a 4-term standardized partition induced from the same
data used for figure 3.a.

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

−200 0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1
C1 C2 C3 C4

(a) Original partition (b) Standardized partition

Fig. 3. Fuzzy partitions

There are many ways to build interpretable fuzzy parti-
tions. We want to have an interpretable result while pre-
serving a good numerical accuracy. We choose to use a
non greedy refinement based algorithm for partition design,
tailored to calculate the fuzzy set bounds and the number of
terms in the fuzzy partition. The algorithm starts with the
simplest possible system (a single fuzzy set for each input),
and works by successive refinement of the input dimensions
inducing the best accuracy gain. The reader is referred to [8]
for details. The outcome of the algorithm is an interpretable
fuzzy set partition for each input.

Let us note that the use of standardized partitions elimi-
nates the problem of quasi-redundant rule selection, a known
drawback of the OLS procedure.

The OLS algorithm is then applied, with the purpose of
building fuzzy rules, thus producing a system with inter-
pretable rule premises. Nevertheless, it still gives forth as
many distinct output values as there are rules in the rule
base. This is why we use the following simple method to
reduce the number of distinct rule conclusions:

1) Set the desired number of final distinct rule conclusion
to c

2) Apply the k-means method with c final clusters to the
N data output values

3) For each rule, replace the conclusion value by the
closest one found by a k-means clustering procedure.

B. Benchmark results

To be sure that our changes to the original method do not
induce too much loss of accuracy, we compare both algo-
rithms on the CPU-performance and auto-mpg benchmarks,
two regression problems taken from the UCI repository [9].
CPU-performance case has 6 continuous variables as its
input, and the CPU-performance as its output. The data
set contains 206 samples. Auto-mpg case has 4 continuous
and 3 multi-valued discrete variables as its input, and the
measured city-cycle fuel consumption as its output. The data
set contains 392 samples

Tests were achieved by doing a ten-fold cross validation.
Data sets were randomly divided into ten parts. For each

part, training was done on the nine others, and testing was
achieved on the selected one. Besides the cumulated ex-
plained variance stop criterion, we also imposed a maximum
number of selected rules.

TABLE I
RESULT COMPARISON BETWEEN MODIFIED AND ORIGINAL OLS

METHODS ON THE CPU AND AUTO-MPG PROBLEMS (AVERAGED ON 10
RUNS)

CPU problem
#MF #R PI CI #R PI CI

Orig. OLS (α=0) 27.8 39.8 69.8 1.00 10 98.1 1.00
Orig. OLS (α=0.1) 27.8 39.8 32.5 0.75 10 46.6 0.23
Mod. OLS (α=0) 2.7 11.3 41.9 0.99 10 45.6 0.97
Mod. OLS (α=0.1) 2.7 11.3 41.9 0.99 10 46 0.95

Auto-mpg problem
Orig. OLS (α=0) 86.8 182.9 3.31 1.00 10 5.47 1.00
Orig. OLS (α=0.1) 86.8 182.9 2.91 0.84 10 3.35 0.25
Mod. OLS (α=0) 3.3 19.3 3.03 1.00 10 2.99 0.99
Mod. OLS (α=0.1) 3.3 19.3 3.03 1.00 10 2.99 0.99

Table I summarizes the results obtained from the test. Val-
ues are mean values computed over the 10 cross-validation
runs. The first column contains the mean number of fuzzy
sets per input data, and the following columns are grouped
by three. For each group, the first column contains the mean
number of rules selected by the algorithm, the second one
the average performance index and the third one the average
coverage index value. Different tests were done, with an
unlimited allowed number of rules or a maximum of ten
rules, for two different activation thresholds: α = 0 and
α = 0.1.

Table I shows that, in the two cases, the original al-
gorithm yields a more complex fuzzy system: inputs have
more membership functions and, on average, more rules are
selected (this is particularly true for the auto-mpg case). If
we compare the performances obtained with an unlimited
number of rules and α = 0, we see that the modified version
gives better results than the original OLS (41.9 against 69.8
for the CPU case, and 3.03 against 3.31 for the auto-mpg
case). In the CPU case, the modified version induces a slight
coverage index loss when compared to the original version.

If we set the activation threshold to 0.1, we see that a lot
of data are not covered by the original version (CI drops
from 100 to 75 % in the CPU case, and to 84 % in the auto-
mpg case), while the modified version is not sensitive to this
change. The same effect can be observed when we limit the
number of selected rules to 10 (3 last columns). Moreover,
in the case where the number of selected rules is limited to
10 (i.e. in the purpose of making the analysis of the rule base
more easy), the effect is far from non-negligeable with the
original method, while this is not the case with our modified
version. This well demonstrates the original algorithm lack
of robustness.

Figure 4 shows the evolution of CI and PI with the
number of rules in the system for both methods and for
the CPU problem (behavior for the Auto-mpg problem is
similar). As expected, CI0 = 1 for the original version

0 5 10 15

0
20

0
40

0
60

0
80

0
10

00

Number of rules

P
er

fo
rm

an
ce

 in
de

x

Number of rules

P
er

fo
rm

an
ce

 in
de

x

C
ov

er
ag

e
in

de
x

0
0.

2
0.

4
0.

6
0.

8
1

cpu data − alpha=0

PI − original OLS
PI − modified OLS
CI − original OLS
CI − modified OLS

Fig. 4. Evolution of PI and CI0 versus number of rules

whatever the number of rules. For the modified version, CI
increases quasi linearly, which means that each added rule
covers a significant amount of samples. Hence it can be
used for knowledge induction. The difference of behavior
between the PI of the different versions for a low number
of rules can be easily explained: the original version has a
low PI because of the poor amount of explained variance,
and the good PI of the modified version must be balanced
by the poor CI0. As the number of rules increases, the two
algorithms display a similar behavior.

Table II compares the results of the modified OLS method
and of other methods (see [10]), in terms of Mean Absolute
Error (criterion used in that reference paper), computed as

MAE = 1

n

n∑
i=1

|ŷi − yi|, n being the number of active

samples. LR stands for multivariate linear regression, RT for
regression tree and NN for neural network (NN). In all cases,
the modified OLS average error is comparable or better to
those of competing methods.

Data set Mod.OLS LR RT NN
CPU-Performance 28.6 35.5 28.9 28.7

Auto-mpg 2.02 2.61 2.11 2.02

TABLE II
COMPARISON OF THE MODIFIED OLS AND OTHER METHODS

The results presented above insure that we can use the
modified OLS on a real-world problem to extract knowledge.

V. REAL-WORLD APPLICATION

A. Presentation

The application concerns a fault diagnosis problem in a
wastewater anaerobic digestion process, where the "living"
part of the biological process must be monitored closely.
Anaerobic digestion is a set of biological processes taking
place in the absence of oxygen and in which organic matter
is decomposed into biogas.

Anaerobic processes offer several advantages: capacity
to treat slowly highly concentrated substrates, low energy
requirement and use of renewable energy by methane com-
bustion. Nevertheless, the instability of anaerobic processes
(and of the attached microorganism population) is a coun-
terpart that discourages their industrial use. Increasing the

TABLE III
INPUT VARIABLES

Name Description
pH pH in the reactor
vfa volatile fatty acid conc.
qGas biogas flow rate
qIn input flow rate
ratio alkalinity ratio

CH4Gas CH4 biogas concentration
qCO2 CO2 flow rate

robustness of such processes and optimizing fault detection
methods to efficiently control them is essential to make them
more attractive to industrials. Moreover, anaerobic processes
are in general very long to start, and avoiding breakdowns
has significant economic implications.

The process has different unstable states: hydraulic over-
load, organic overload, underload, toxic presence, acidogenic
state. The present study focuses on the acidogenic state. This
state is particularly critical, and going back to a normal state
is time consuming, thus it is important to detect it as soon
as possible. It is mainly characterized by a low pH value
(< 7), a high concentration in volatile fatty acid and a low
alkalinity ratio (generally < 0.3).

Our data consist of a set of 589 samples coming from
a pilot-scale up-flow anaerobic fixed bed reactor. Data are
provided by the LBE, an INRA laboratory located in Nar-
bonne, France. Seven input variables summarized in table III
were used in the case study. Unless stated otherwise, all
subsequent results are obtained by using the modified version
of the OLS algorithm.

The output is an expert assigned number from 0 to 1
indicating to what extent the actual state can be considered
as acidogenic. Fault detection systems in bioprocesses are
usually based on expert knowledge. Multidimensional inter-
actions are imperfectly known by experts. The modified OLS
method allows to build a fuzzy rule base from data, and the
rule induction can help experts to refine their knowledge of
fault-generating process states.

Before applying the modified OLS, we build the fuzzy
partitions as described in section IV (see [8] for details),
which yields the selection of four input variables: pH , vfa,
qIn and CH4Gas. The membership functions are shown
in Figure 5. Notice that each membership function can be
assigned an interpretable linguistic label.

B. First analysis

A first application of the modified OLS to the data set gives
us a system of 53 rules and a global performance PI =
0.046. Some conclusions of general interest can be drawn
from these first results.

• Rule ordering: amongst the 589 samples, only 35 have
an output value greater than 0.5, while there are 12
rules out of 53 that have a conclusion greater than 0.5.
Moreover, 8 of these rules are in the first ten selected
ones (the first six having a conclusion very close to one):
the algorithm first selects rules corresponding to "faulty"

5 5.5 6 6.5 7 7.5 8 8.5 9
0

0.2

0.4

0.6

0.8

1

1.2 A
1
 A

2
 A

3
 A

4

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

1.2

A
1
 A

2
 A

3
 A

4
 A

5

pH vfa

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2 A
1
 A

2
 A

3

40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

A
1
 A

2
 A

3
 A

4
 A

5

qIn CH4Gas

Fig. 5. Fuzzy partitions for wastewater treatment application

situations. The explanation is that the algorithm is based
on explained variance, a variance greatly increased by
a "faulty" sample. This highlights a very interesting
characteristic of the OLS algorithm, which first selects
rules related to rare samples, very important in fault
diagnosis.

• Out of range conclusions: each output in the data set
is between 0 and 1. This is no more the case with the
rule conclusions, some of them being greater than 1
or taking negative values. It is due to the least-square
optimization method, done without any constraints on
the conclusion values. This is one of the deficiencies
of the algorithm, at least from an interpretability driven
point of view.

• Removing outliers: The fact that rules corresponding
to rare samples are favored in the selection process has
another advantage: the ease with which outliers can be
identified and analyzed. In our first rough analysis of
the rule base, two specific rules caught our attention:

– Rule 5: If pH is A3 and vfa is A1 and qIn is A1

and CH4 is A1, then output is 0.999
– Rule 6: If pH is A4 and vfa is A3 and qIn is A3

and CH4 is A5, then output is 1
Both rules indicate a high risk of acidogenesis with a
high pH , which is inconsistent with expert knowledge
of the acidogenic state. Further investigation shows
that each of these two rules is activated by only one
sample, which does not activate any other rule. These
two samples being labeled as erroneous data (maybe a
sensor dysfunction), we remove them from the data set
in further analysis.

C. Final system

The final rule base (after a new application of the modified
OLS) has 51 rules, the two rules induced by erroneous data
having disappeared. In an extra step, the output vocabulary is
reduced from 49 to 6 distinct values, all of them constrained
to belong to the output range. The new system performance
is PI=0.056 (i.e. a 15 percent accuracy loss). This loss was
judged acceptable for our purpose (i.e. knowledge discovery).

Concerning coverage index and activation threshold, tests
showed that up to α = 0.5, only one sample amongst
the 587 ones is not covered by the rule base, which is a
good sign as to the robustness of our results. In comparison,
original OLS also builds a system with 51 rules, but where
each fuzzy partition count more than 500 fuzzy sets, and
for a PI = 0.074 (less than modified OLS PI, even with
reduced vocabulary). Moreover, the CI of the system built
with the original OLS drops from 100% to 35% as soon as
the activation threshold increases from 0 to 0.1.

Concerning the results of the modified version, another
interesting feature is that 100% of the samples having an
output greater than 0.2 are covered by the first twenty rules,
allowing one to first focus on this smaller set of rules to
describe critical states.

Figure 6 illustrates the good qualitative predictive quality
of the rule base: we can expect that the system will detect
a critical situation soon enough to prevent any collapse of
the process. From a function approximation point of view,
the prediction would be insufficient. However, for expert
interpretation, figure 6 is very interesting. Three clusters
appear. They can be labeled as Very low risk, Non neglectable
risk and High risk. They could be associated to three kinds
of action or alarms.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Observed value

In
fe

rr
ed

 v
al

ue

Fig. 6. Prediction with 6 conclusion values. •: Detection with trig-
ger > 0.2 ; {∗,♦}: Non-detection with trigger = 0.2 ; ♦: Non-detection
with trigger = 0.3

From a fault detection point of view, some more time
should be spent on the few faulty samples that wouldn’t
activate a fault detection trigger set at 0.2 or 0.3. They have
been signalled to experts for further investigation. Each rule
fired by those five samples (asterisk and diamond in figure 6)
is also activated by about a hundred other samples which
have a very low acidogenic state. It may be difficult to draw
conclusions from these five samples.

VI. CONCLUSIONS

The OLS algorithm (and orthogonal transform method in
general) was originally designed in order to build compact
rule bases with an efficient numerical accuracy, but with
almost no interpretability power.

In this paper, two modifications are proposed. The first one
consists in using standardized input partitions. This improves
linguistic interpretability and avoids the selection of quasi-
redundant rules by the OLS. The second proposition is to
reduce the number of distinct conclusions to a handful. Tests
have shown that, if the effect of this reduction on the training
data can lower accuracy, it is hardly true on the test data.

We have successfully applied the modified OLS to a fault
detection problem. Our results are robust, interpretable, and
our predictive capacity is reasonably good. The OLS was
also shown to be able to detect some erroneous data after
a first brief analysis. When dealing with applications where
the most important samples are rare, the OLS algorithm can
be very useful.

The modified OLS is a simple and efficient numerical tool
that allow to build relatively small interpretable rule bases for
regression problems (which is interesting, since most of the
existing algorithms focus on classification problems). As is
shown by the application, it can be very useful as a support
for expert analysis, particularly in fault detection problems.

The proposed modifications could benefit to all orthogonal
transforms (see, e.g. [2]), and a next step of this work
would be to undertake a thorough study of the advantages
of such methods, together with a study of robustness and
sensitivity to the algorithm parameters. Moreover, it would
be interesting to see how classical backward-forward step-
wise regression procedures could help in the result analysis.
Another perspective is to apply this method in conjunction
with an efficient variable selection method.

ACKNOWLEDGMENT

The authors would like to thank the LBE laboratory of
INRA Narbonne for allowing us to use their data, and
Laurent Lardon for the helpful interpretation of our results.

REFERENCES

[1] Jorge Casillas, Oscar Cordon, Francisco Herrera, and Luis Magdalena.
Interpretability Issues in Fuzzy Modeling, volume 128 of Studies in
Fuzziness and Soft Computing. Springer, 2003.

[2] John Yen and Liang Wang. Simplifying fuzzy rule-based models using
orthogonal transformation methods. IEEE Transactions on Systems,
Man and Cybernetics, 29 (1):13–24, February 1999.

[3] Li-Xin Wang and Jerry M. Mendel. Fuzzy basis functions, universal ap-
proximation, and orthogonal least squares learning. IEEE Transactions
on Neural Networks, 3:807–814, 1992.

[4] J. Hohensohn and J. M. Mendel. Two pass orthogonal least-squares
algorithm to train and reduce fuzzy logic systems. In Proc. IEEE Conf.
Fuzzy Syst., pages 696–700, Orlando, Florida, June 1994.

[5] Serge Guillaume. Designing fuzzy inference systems from data: an
interpretability-oriented review. IEEE Transactions on Fuzzy Systems,
9 (3):426–443, June 2001.

[6] J. Valente de Oliveira. Semantic constraints for membership functions
optimization. IEEE Transactions on Systems, Man and Cybernetics.
Part A, 29(1):128–138, 1999.

[7] Witold Pedrycz. Why triangular membership functions? Fuzzy sets and
Systems, 64 (1):21–30, 1994.

[8] Serge Guillaume and Brigitte Charnomordic. Generating an inter-
pretable family of fuzzy partitions. IEEE Transactions on Fuzzy
Systems, 12 (3):324-335, June 2004.

[9] http://www.ics.uci.edu/∼mlearn/MLRepository.html. UCI repository of
machine learning databases, 1998.

[10] J. Quinlan. Combining instance-based model and model-based learn-
ing. In Proceedings of the 10th ICML, pages 236–243, San Mateo, CA,
1993.

