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A CONSONANT APPROXIMATION OF THE PRODUCT OF INDEPENDENT
CONSONANT RANDOM SETS

SBASTIEN DESTERCKE, DIDIER DUBOIS, AND ERIC CHOJNACKI

ABSTRACT. The belief structure resulting from the combination of consonant and inde-
pendent marginal random sets is not, in general, consonant. Also, the complexity of such a
structure grows exponentially with the number of combined random sets, making it quickly
intractable for computations. In this paper, we propose a simple guaranteed consonant
outer approximation of this structure. The complexity of this outer approximation does not
increase with the number of marginal random sets (i.e., of dimensions), making it easier
to handle in uncertainty propagation. Features and advantages of this outer approximation
are then discussed, with the help of some illustrative examples.

1. INTRODUCTION

We consider the problem of modeling uncertainty concerning the values that several
variables X1, . . . ,XN can respectively assume on domains X1, . . . ,XN (finite sets, inter-
vals). For a long time, such a task has been handled by the sole means of probability the-
ory. However, many arguments [Walley, 1991] converge to the conclusion that probability
distributions alone cannot faithfully model the incompleteness, scarcity or unreliability of
information. In this case, other theories explicitly modeling these issues can be advocated.
In this paper, we mainly consider two such theories: possibility theory [Dubois and Prade,
1988] and random set theory [Molchanov, 2005].

In practical applications, uncertainty is seldom modeled or elicited directly over the
whole Cartesian product ×N

i=1Xi. A more common practice is to build or elicit marginal
models for each variable X1, . . . ,XN and then to combine them by taking into account pos-
sible dependencies between them, this last step being easier under an independence as-
sumption. However, as the number N of variables increases, the structural complexity
resulting from this combination often increases exponentially, making it uneasy to handle
computationally. In such cases, simple outer-approximating models are easier to handle
when propagating uncertainty and they can guarantee conservative results (i.e., they do not
consider more information than available).

In this paper, we consider the case where the marginal uncertainty on each variable
X1, . . . ,XN is modeled by a consonant random set (i.e., a possibility distribution) and that
these random sets can be combined into a joint uncertainty model by assuming random
set independence. Since manipulating such a joint structure can be difficult in practice,
we provide a joint outer-approximating possibility distribution that can be built by a sim-
ple transformation of each marginal random set. This result extends to any number of
dimensions a result already given by [Dubois and Prade, 1990] for the 2-dimensional case
(N = 2). The features and potential advantages of this outer-approximation are then dis-
cussed and compared with other methods by means of illustrative examples.
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Although the situation considered here (consonant random sets with random set in-
dependence) can be viewed as somewhat restrictive, it is likely to occur in many practi-
cal situations. First, there are many cases where possibility distributions will adequately
model available information: experts expressing their opinion by lower confidence bounds
over nested intervals [Sandri et al., 1995]; nested statistical prediction intervals [Birn-
baum, 1961, Dubois et al., 2004]; partial probabilistic information [Baudrit and Dubois,
2006]; consonant approximation of multinomial sampling [Masson and Denoeux, 2006,
Aregui and Denoeux, 2008]. Second, random set independence can be interpreted and
used in various ways: for example, it can correspond to independence between information
sources [Baudrit et al., 2007], or be used as a conservative (but mathematically convenient,
as it can be simulated by sampling methods) modeling of stochastic independence between
variables whose true probabilities are ill-known [Couso, 2007, Fetz, 2001] .

The paper is organized as follows: basics about possibility theory, random sets and
(in)dependence notions in these theories are recalled in Section 2. The possibilistic outer
approximation is then introduced and discussed in Section 3. Potential advantages of such
an outer approximation when treating information are then illustrated on simple examples
in Section 4.

2. PRELIMINARIES

This section provides basics about possibility distributions and random sets needed in
the sequel. Also recall that our aim is to describe the joint uncertainty over variables
X1, . . . ,XN assuming values on some domains X1, . . . ,XN . As we will often work with
Cartesian product of spaces, we adopt the following notation: given two values k, ` such
that 1≤ k ≤ `≤ N, we denote by X(k:`) :=×`

i=kXi the Cartesian product of the `− k +1
domains Xk, . . . ,X`. Similarly, we denote by X(k:`) := (Xk, . . . ,X`) a variable assuming
values on X(k:`), and x(k:`) := (xk, . . . ,x`) ∈X(k:`) a specific element of X(k:`).

2.1. Random sets. A discrete normal random set, here denoted by (m,F), over a domain
X is defined as a mapping m :℘(X )→ [0,1] from the power set ℘(X ) of X to the unit
interval, with ∑E⊆X m(E) = 1 and m( /0) = 0. We call m a mass assignment, and a set E
that receives strictly positive mass a focal set. The mass m(E) can be interpreted as the
probability that the most precise description of what is known about a particular situation
is of the form ”x ∈ E”. Weights m(E) should be shared between elements of E but are not
by lack of information. From this mass assignment, Shafer [Shafer, 1976] defines two set
functions, called belief and plausibility functions, for any event A⊆X :

Bel(A) = ∑
E,E⊆A

m(E); Pl(A) = 1−Bel(Ac) = ∑
E,E∩A6= /0

m(E),

where the belief function measures the certainty of A (i.e., sums all masses that cannot
be distributed outside A) and the plausibility function measures the plausibility of A (i.e.,
sums all masses that it is possible to distribute inside A). In this view, sets E are called
disjunctive in the sense that they are made of mutually exclusive elements. They represent
incomplete information inducing uncertainty 1. Note that the two functions Bel,Pl are
conjugate, in the sense that specifying one of them for all events is enough to characterize
the other. Shafer also defines another set-function, the commonality function, which reads,
for any event A⊆X ,

q(A) = ∑
E,A⊆E

m(E).

1This is in contrast with other uses of random sets.
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This function sums all the masses that could go to any element of A. Since the greater
the mass given to larger sets, the higher the values of the commonality function, it can be
argued that this function reflects the imprecision of information.

The two functions Bel,Pl can also be interpreted as lower and upper probabilistic
bounds describing an imprecise state of knowledge. In this latter case, a random set (m,F)
induces a convex set P(m,F) of probability distributions such that

P(m,F) = {P ∈ PX |∀A⊆X ,Bel(A)≤ P(A)},

with PX the set of all probability distributions on X . This view is closer to the one
adopted by Dempster [Dempster, 1967], while Shafer (like Smets [Smets and Kennes,
1994] later on) does not refer to any underlying standard probabilistic framework.

2.2. Possibility distributions. Possibility distributions are the primary mathematical tools
of possibility theory. A possibility distribution is a mapping π : X → [0,1] from a space
X to the unit interval such that π(x) = 1 for at least one element x in X .

As for random sets, several set functions [Dubois et al., 2000a] can be defined from a
possibility distribution, among which are the possibility and necessity functions:

Π(A) = sup
x∈A

π(x); N(A) = 1−Π(Ac) = inf
x∈Ac

(1−π(x)).

Possibility and necessity functions respectively measure the plausibility and certainty of
event A. Their characteristic properties are: N(A∩B) = min(N(A),N(B)) and Π(A∪B) =
max(Π(A),Π(B)) for any pair of events A,B of X .

Given a degree α ∈ [0,1] the strong (Aα ) and regular (Aα ) α-cuts of a distribution π are
subsets respectively defined as

Aα = {x ∈X |π(x) > α},(1)

Aα = {x ∈X |π(x)≥ α}.(2)

These α-cuts are nested, since if α > β , then Aα ⊆ Aβ . When possibility distributions are
discrete, the set of values {π(x)|x ∈X } is of the form 1 = α1 > .. . > αM > αM+1 = 0,
meaning that in this case there are only M distinct α-cuts.

It can be shown [Shafer, 1976, Ch.10] that any necessity (resp. possibility) function is a
special kind of belief (resp. plausibility) function, whose associated random set has nested
focal sets. In this case, the random set is commonly called consonant. Thus, any possibility
distribution π , defines a random set (mπ ,Fπ) having, for i = 1, . . . ,M, the following focal
sets Ei with masses m(Ei) [Dubois and Prade, 1982]:

(3)
{

Ei = {x ∈X |π(x)≥ αi}= Aαi ,
m(Ei) = αi−αi+1.

Conversely, any random set with nested focal sets can be modeled by a unique possibility
distribution in general 2.

Again, necessity and possibility measures of a distribution π can be seen as lower and
upper probabilistic bounds, and can be associated to the convex set Pπ of probabilities
such that

(4) Pπ = {P ∈ PX |∀A⊆X , N(A)≤ P(A)}.

2The link between nested random sets and possibility measures is less straightforward in more abstract infinite
mathematical settings, see [Miranda et al., 2002].
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2.3. Specificity in possibility and random set theory. The issue of comparing the in-
formative power (or specificity) of random set representations of incomplete information
relies on extending the notion of set inclusion. In the case of possibility distributions, fuzzy
set inclusion is instrumental.

Definition 1 (π-inclusion). Let π1,π2 be two possibility distributions. π1 is then said to be
included in π2 if and only if π1 ≤ π2, and we denote this inclusion by π1 vπ π2.

Many different notions extending classical set-inclusion to random sets can be found in
the literature: the notions of pl-,q- and s-inclusions [Dubois and Prade, 1986] are the older
ones 3, while [Denoeux, 2008] recently introduced yet other notions (w- and v-inclusions)
based on [Smets, 1995] canonical decomposition of belief functions. Each of these notions
induces a different partial order on the set of all random sets.

Definition 2 (pl-inclusion). Let (m1,F1), (m2,F2) be two random sets. (m1,F1) is then
said to be pl-included in (m2,F2) if and only if, for all A⊆X ,

Pl1(A)≤ Pl2(A),

and we denote this inclusion by (m1,F1)vpl (m2,F2).

Note that (m1,F1) is pl-included in (m2,F2) if and only if P(m1,F1) ⊆P(m2,F2)

Definition 3 (q-inclusion). Let (m1,F1), (m2,F2) be two random sets. (m1,F1) is then
said to be q-included in (m2,F2) if and only if, for all A⊆X ,

q1(A)≤ q2(A),

and we denote this inclusion by (m1,F1)vq (m2,F2).

And neither of these notions implies the other [Dubois and Prade, 1986] (that is, two
random sets can be pl-included in each other and not q-included, and vice versa).

Definition 4 (s-inclusion). Let (m1,F1), (m2,F2) be two random sets and F1 = {E1, . . . ,Eq},
F2 = {E ′1, . . . ,E ′p} be their respective sets of focal elements. Then, (m1,F1) is said to be
s-included in (m2,F2), or to be a specialization of (m2,F2) if and only if there exists a
non-negative matrix G, of generic term gi j and such that

for i = 1, . . . ,q,
p

∑
j=1

gi j = 1,

gi j > 0⇒ Ei ⊆ E ′j,

m2(E ′j) =
q

∑
i=1

m1(Ei)gi j.

The term gi j is the proportion of the mass m(E ′j) that ”flows down” to focal set Ei. In
other words, (m1,F1) is s-included in (m2,F2) if the mass of any focal set E ′j of (m2,F2)
can be redistributed among subsets of E ′j in (m1,F1). When (m1,F1) is s-included in
(m2,F2), we denote it by (m1,F1)vs (m2,F2). [Dubois and Prade, 1986] have shown
that (m1,F1)vs (m2,F2) implies both (m1,F1)vpl (m2,F2) and (m1,F1)vq (m2,F2).

Given a particular notion of inclusion, we say that a first random set (m1,F1) is an
outer-approximation (resp. inner-approximation) of a second random set (m2,F2) when

3Notions pl- and s-inclusions are the most commonly used, and are often respectively called weak and strong
inclusion between random sets.
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(m2,F2) is included in (resp. includes) (m1,F1). If (m2,F2) is included in (m1,F1), we
also say that (m2,F2) is more committed, or is more specific than (m1,F1).

In this paper, we will only use the notion of s-inclusion, because it is the most natu-
ral inclusion notion to use with random sets, since it is expressed by means of inclusion
between focal elements. Also, since s-inclusion implies both pl- and q-inclusion, an outer-
approximation with respect to s-inclusion is ensured to be an outer-approximation with
respect to both pl- and q-inclusion, while it would not be the case if we focused on one of
these two later notions.

When working with possibility distributions and their induced random sets, then the
tree notions of inclusion collapse into Definition 1, and results holding for one of them
holds for the others. This is not the case when working with the recent notions of w- and
v-inclusions introduced by [Denoeux, 2008], which do not reduce to Definition 1 when
particularised to random sets with nested focal sets (i.e., possibility distributions). This is
why we do not consider such notions in the present paper.

2.4. Independence modeling. Given N marginal random sets (m1,F1), . . . ,(mN ,FN) re-
spectively modeling uncertainty over variables X1, . . . ,XN , assuming random set indepen-
dence allows to easily build a joint random set over X(1:N). Let E1, . . . ,EN be any collec-
tion of focal elements of (m1,F1), . . . ,(mN ,FN) (i.e., Ei ∈Fi), then the joint random set
resulting from (m1,F1), . . . ,(mN ,FN) and an assumption of random set independence, is
denoted by (mRSI,X(1:N) ,FRSI,X(1:N)), such that

(5) mRSI,X(1:N)(×
N
i=1Ei) =

N

∏
i=1

mi(Ei),

that is, the Cartesian product of focal sets receives as joint mass the product of marginal
masses of these focal sets. As recalled in the introduction, random set independence is
likely to be useful in many practical situations, but we can see from (5) that the number of
focal sets will grow exponentially with the number N of dimensions. Such a joint structure
is thus likely to become quickly intractable in practice.

When each marginal random set (mπ1 ,Fπ1), . . . ,(mπN ,FπN ) is consonant, that is stems
from possibility distributions π1, . . . ,πN , another way to combine these random sets, origi-
nating from possibility theory and first proposed by [Zadeh, 1975], is to consider the joint
possibility distribution denoted by π(1:N) and such that, for every x(1:N) ∈X(1:N) , the fol-
lowing identity holds:

(6) π(1:N)(x(1:N)) = min
i=1,...,N

πi(xi)

and we will denote by (mπ(1:N) ,Fπ(1:N)) the corresponding random set. This notion, called
possibilistic non-interaction by Zadeh, is sometimes also referred to as fuzzy set inde-
pendence [Fetz, 2001]. Here, we adopt the first terminology, and will call a joint possi-
bility distribution (and the induced random set) built from marginal distributions by min-
combination (i.e. using Equation (6)) non-interactive. If {1 = α1 > .. . > αM > αM+1 = 0}
is the (finite) set of all distinct values taken by π1, . . . ,πN (resp. on X1, . . . ,XN), then
(mπ(1:N) ,Fπ(1:N)) has, for i = 1, . . . ,M, the following focal elements:

(7)

{
Eπ(1:N),i = {x(1:N) ∈X(1:N)|π(1:N)(x(1:N))≥ αi}=×N

j=1E j,i,

m(Eπ(1:N),i) = αi−αi+1,

with E j,i the αi-cut of the marginal distribution π j. In other words, focal elements of
(mπ1 ,Fπ1), . . . ,(mπN ,FπN ) are combined level-wise, and correspond to an assumption of
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complete correlation between α-cuts. It means sources provide cuts with the same confi-
dence levels but variables xi are otherwise logically independent in ×N

j=1E j,i. Note that,
in the above Equation (7), the number M of focal elements of the joint structure can only
increase linearly with the number N of dimensions, thus providing a more manageable
joint structure than (5). Also note that (5) does not preserve consonance of joint focal sets,
while (7) ensures it by construction.

It is then tempting to use the simpler joint possibility distribution (mπ(1:N) ,Fπ(1:N)) to
approximate the more complex belief structure (mRSI,X(1:N) ,FRSI,X(1:N)). However, it is
well known (see [Tonon and Chen, 2005, Baudrit et al., 2006]) that given some marginal
random sets (mπ1 ,Fπ1), . . . ,(mπN ,FπN ), the joint structure (mRSI,X(1:N) ,FRSI,X(1:N)) neither
is s-included nor s-includes the joint structure (mπ(1:N) ,Fπ(1:N)). Hence, using the more
manageable (mπ(1:N) ,Fπ(1:N)) to approximate (mRSI,X(1:N) ,FRSI,X(1:N)) is not without risk,
as it does not guarantee any kind of conservatism. In the rest of this paper, we focus
on finding a minimal guaranteed outer approximation (in the sense of the s-inclusion) of
(mRSI,X(1:N) ,FRSI,X(1:N)) that has the features of (mπ(1:N) ,Fπ(1:N)).

3. POSSIBILISTIC OUTER-APPROXIMATION OF INDEPENDENT CONSONANT RANDOM
SETS

The question we address in this section is the following: is it possible to transform the
marginal distributions π1, . . . ,πN into distributions π ′1, . . . ,π

′
N and then to combine these

new distributions into a joint consonant random set (mπ ′(1:N)
,Fπ ′(1:N)

) over X(1:N) using

Equation (7), such that (mRSI,X(1:N) ,FRSI,X(1:N))vs (mπ ′(1:N)
,Fπ ′(1:N)

) and is minimal with
this property? In other words, can we define, from π1, . . . ,πN , a joint possibility distribution
π ′(1:N) whose induced random set s-includes (mRSI,X(1:N) ,FRSI,X(1:N))?

3.1. Main result. First, note that when constructing a non-interactive possibility distri-
bution π ′X(1:N)

(and the induced joint random set) from a transformation of π1, . . . ,πN , the

focal elements of (mπ ′X(1:N)
,Fπ ′X(1:N)

) will be of the type ×N
j=1E j,i. That is they must still be

Cartesian products of α-cuts of distributions π1, . . . ,πN . We can then answer to the above
question by the following proposition:

Proposition 1. The most specific non-interactive possibility distribution π ′X(1:N)
induc-

ing a random set (mπ ′X(1:N)
,Fπ ′X(1:N)

) outer approximating (in the sense of s-inclusion)

(mRSI,X(1:N) ,FRSI,X(1:N)) is such that, for any x(1:N) ∈X(1:N),

(8) π
′
X(1:N)

(x(1:N)) = min
i=1,...,N

{(−1)N+1(πi(xi)−1)N +1},

The detailed proof, which can be found in Appendix A, consists in showing that by ap-
plying Equation (8), the mass is allocated to focal sets of the type ×N

j=1E j,i in such a way
that it sums the masses of all its subsets that are also focal elements of (mRSI,X(1:N) ,FRSI,X(1:N)).

Proposition 1 extends to any number N of dimensions the result provided in [Dubois and
Prade, 1990] for the 2-dimensional case. It indicates that if one transforms each distribution
πi into

(9) π
′
i = (−1)N+1(πi−1)N +1

and then consider the associated joint uncertainty model resulting from an assumption of
possibilistic non-interaction, the result is a guaranteed outer approximation of the random
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set (mRSI,X(1:N) ,FRSI,X(1:N)). We thus cut down the size of the representation, from a struc-
ture whose complexity grows exponentially with the number of dimensions, to one that has
a linear complexity in the number of dimensions.

Also note that we could use a T-norm [Klement et al., 2000] other than the minimum as
a combination operator in Equation (8) (dropping the assumption of non-interactivity), and
search for suitable transforms π ′′1 , . . . ,π ′′N of π1, . . . ,πN providing the most specific outer-
approximation. However, since the minimum is the most conservative of all T-norms, any
joint possibility distribution outer-approximating (mRSI,X(1:N) ,FRSI,X(1:N)) and combined by
the means of another T-norm would imply a transformation of marginal distributions such
that π ′′i ≥ π ′i for any i ∈ {1, . . . ,N}, thus losing even more information on each variable.

Our approximation intends to provide a conservative structure that directly approxi-
mates a complex joint structure (mRSI,X(1:N) ,FRSI,X(1:N)). It is straightforward to build and
remains easy to manipulate within the family of consonant random sets. There are other
approaches allowing to outer approximate some given random set. For example, given a
random set modelling information on a single variable X , [Denoeux, 2001] proposes to
affect weights given to some focal elements to coarser focal elements, building an outer-
approximation s-including the original random set, without making any assumption about
the structure of focal elements.

3.2. Evaluating the loss of information. As going from exponential to linear complexity
in the number of dimensions is not without cost, the loss of information incurred in the
process needs to be evaluated. In particular, we can see that the value of π ′i in Equation (9)
converges to 1 if πi(xi) > 0 as N increases, and is 0 if πi(xi) = 0. This means that, as
N increases, the outer-approximation π ′ converges to a Boolean possibility distribution
such that π ′X(1:N)

(x(1:N)) = 1 if x(1:N) ∈×N
j=1πi,0, zero otherwise (i.e., towards the Cartesian

product of supports of distributions πi, i = 1, . . . ,N). Both Figures 1 and 2 provide some
intuition about the rate of convergence.

Before commenting these figures, recall a known result [Dubois and Prade, 1990] con-
cerning the best inner consonant approximation of independent random set:

Proposition 2. The most specific joint possibility distribution π
∏

X(1:N)
whose induced ran-

dom set inner-approximate (mRSI,X(1:N) ,FRSI,X(1:N)) (in the sense of s-inclusion) is such that

π
∏

X(1:N)
(x(1:N)) =

N

∏
i=1

πi(xi)

For this inner approximation, all values strictly lower than one converge to zero as the
number of dimension increases, indicating that the inner approximation converges towards
the Cartesian product of cores of distributions πi. Note that there does not currently exist
any easy means to express π

∏

X(1:N)
as a non-interactive joint possibility distribution (i.e., as a

min-based combination of transformed marginal possibility distributions). This makes the
inner approximation less attractive from a computational perspectives, as one will have to
consider the joint model as a whole and will not be able to make level-wise computations
on marginal distributions.

Figure 1 plots the evolution of fixed initial possibility degree values against the number
of dimensions. That is, each full line represent π ′i (x) versus the number of dimensions, for
a given πi(x), while dotted lines represent the same information for π∏. It shows that the
information loss induced by the adoption of the possibilistic outer-approximation can be
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FIGURE 1. Evolution of outer-approximating (—) and inner-
approximating (---) distribution degree (α) versus input space
dimension (N), for a given starting π(x) (N = 1).
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FIGURE 2. Possibility distributions π ′i obtained from a marginal trian-
gular possibility distribution πi for different input space dimensions
(1,2,3,4,5,10,15,20)

important, since it converges quickly to one. Still, the approximation is potentially useful
when dealing with a reasonable number of variables (i.e., less than 10).

Figure 2 then sketches some distributions π ′i for different input space dimensions, start-
ing from a triangular possibility distribution πi on the real line, with center 0 and support
[−1,1]. We can see on this figure that, even if the loss of information is important (and
thus the approximation likely to be coarse), part of this information remains, even for high
dimensions.
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4. COMPARISONS WITH OTHER APPROACHES ON ILLUSTRATIVE EXAMPLES

As we have seen in the previous section, the proposed outer approximation allows for
a significant decrease of complexity of the resulting joint structure, but it also implies an
important loss of information. After this study of the approximation itself, it is legitimate
to wonder if, in applications, this approximation could be useful compared to other ones,
and in which specific cases is it better to use it?

In this section, we bring some insight by focusing on the problem of uncertainty propa-
gation. We consider that X1, . . . ,XN take their values on closed intervals of the real line, that
uncertainty about these values are modeled by (discrete or discretized) possibility distri-
butions π1, . . . ,πN and that either the variables or the sources having provided information
about them can be judged independent. We then consider the problem of propagating un-
certainty on input variables X1, . . . ,XN through a (functional) model T : X(1:N) → Y in
order to evaluate the resulting uncertainty on Y .

Propagating uncertainty with random sets is, from a mathematical standpoint, easy.
Given a random set (m,F) defined over the Cartesian product X(1:N), then the propagated
random set (mY ,FY ) is such that, to any focal set E ∈F (E ⊆X(1:N)), corresponds the
propagated focal set EY {

EY = T (E) = {T (x(1:N))|x(1:N) ∈ E},
m(EY ) = m(E).

Propagating a random set simply consists in mapping every focal set to a set through T .
The most difficult parts are (i) in the assessment and construction of the joint random set
over X(1:N) and (ii) in the propagation through T , which can be computationally very de-
manding, especially when (m,F) has a high number of focal sets and/or when evaluations
of T are costly. In this case, it can be useful to relax some assumptions about the depen-
dence structure or to consider some suitable outer approximation in order to cut down the
complexity of the propagation. In the following, we will compare two such approaches:

(1) The relaxation of the random set independence assumption by considering all pos-
sible dependence structures. The resulting propagation is indeed conservative and
allows the use of so-called probabilistic arithmetic [Williamson and Downs, 1990],
a well-known efficient tool to propagate uncertainties.

(2) The propagation of our proposed outer approximation (mπ ′X(1:N)
,Fπ ′X(1:N)

) by means

of the extension principle [Dubois et al., 2000b], that is the computation of π ′Y such
that, or any y ∈ Y ,

(10) π
′
Y (y) = sup

T (x1,...,xN)=y
min(π ′X1

(x1), . . . ,π ′XN
(xN))

with, for i = 1, . . . ,N, π ′Xi
given by Eq. (9) and xi ∈Xi. This amounts to propagat-

ing the random set (mπ ′X(1:N)
,Fπ ′X(1:N)

) rather than (mRSI,X(1:N) ,FRSI,X(1:N)).

4.1. Probabilistic arithmetic. Let us first recall the basics about probabilistic arithmetic
and the uncertainty model it uses, i.e., p-boxes. A p-box is a pair of (discrete) cumulative
distributions [F ,F ] defined on a closed interval of the real line R that induces a probability
family such that P[F ,F ] = {P∈PX |∀r ∈R,F(r)≤P([−∞,r)≤F(r)}. It is known [Dester-
cke et al., 2008a,b, Kriegler and Held, 2005] that a p-box is also a special kind of random
set.

To any possibility distribution π defined on the real line, we can associate a p-box
[F ,F ]

π
such that, for any r ∈ R, Fπ(r) = N((−∞,r]) and Fπ(r) = Π((−∞,r]), with N,Π
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the necessity and possibility measures based on π . We also have that the random set
(mπ ,Fπ) induced by π is pl-included in the random set (m[F ,F ]π

,F[F ,F ]π
) induced by

[F ,F ]
π

[Baudrit and Dubois, 2006] (i.e., Pπ ⊆P[F ,F ]π
, hence [F ,F ]

π
outer-approximates

π)
Now, let [F ,F ]

π1
, . . . , [F ,F ]

πN
be p-boxes deriving from distributions π1, . . . ,πN . When,

and only when T is expressible as a combination of arithmetic operations (or, more gen-
erally, of monotonic functions of two variables, e.g., log,exp, . . .), probabilistic arith-
metic provides an efficient tool to propagate all these p-boxes (or their equivalent ran-
dom set) while assuming unknown dependencies between them. That is, it considers
every possible kind of dependencies between [F ,F ]

π1
, . . . , [F ,F ]

πN
(among which is ran-

dom set independence). The result is thus an outer approximation of the propagation of
(mRSI,X(1:N) ,FRSI,X(1:N)).

Given two real-valued variables X ,Y and some p-boxes [F ,F ]X , [F ,F ]Y describing un-
certainty pervading them, the result of applying each arithmetic operations {+,−,×,÷}
reads, for any z ∈ R:

FX+Y (z) = sup
x,y∈R,x+y=z

{max(FX (x)+FY (y)−1,0)}

FX+Y (z) = inf
x,y∈R,x+y=z

{min(FX (x)+FY (y),1)}

FX−Y (z) = sup
x,y∈R,x+y=z

{max(FX (x)+FY (−y),0)}

FX−Y (z) = inf
x,y∈R,x+y=z

{min(FX (x)+1−FY (−y),1)}

FX×Y (z) = sup
x,y∈R,x×y=z

{max(FX (x)+FY (y)−1,0)}

FX×Y (z) = inf
x,y∈R,x×y=z

{min(FX (x)+FY (y),1)}

FX÷Y (z) = sup
x,y∈R,x×y=z

{max(FX (x)+FY (1/y),0)}

FX÷Y (z) = inf
x,y∈R,x×y=z

{min(FX (x)+1−FY (1/y),1)}

Remark Note that the expressions for computing lower cumulative functions are the same
as those for computing fuzzy interval arithmetic computations under the extension princi-
ple where the minimum is changed into a t-norm (here the Lukasiewicz t-norm max(a +
b−1,0)). See [Dubois and Prade, 1981] and [Wagenknecht et al., 2001]. Likewise, prop-
agating the optimal inner approximation of Proposition 2 comes down to computing with
fuzzy intervals using a sup-product extension principle.

4.2. Comparison on illustrative examples. Let us now compare, on some illustrative ex-
amples, the propagation of p-boxes [F ,F ]

π1
, . . . , [F ,F ]

πN
by probabilistic arithmetic with

the exact propagation of the outer approximation (mπ ′X(1:N)
,Fπ ′X(1:N)

). To make this compar-

ison, we will transform the p-box resulting from probabilistic arithmetic, denoted [F ,F ]Y ,
into the possibility distribution π[F ,F ]Y

from which it could stem. That is, for any value
r ∈ R,

(11) π[F ,F ]Y
(r) =

{
FY (r) if FY (r) < 1

1−FY (r) if FY (r) > 0

Example 1. First consider the simple function Y = X1 + X2−X3, with X1,X2,X3 positive
real-valued variables whose uncertainty is modeled by the same possibility distribution,
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summarized in Table 1 , together with their transformation (9) and the distribution resulting
from the application of Eq (10).

πX1 ,πX2 ,πX3 ⇒(8) π ′X1
,π ′X2

,π ′X3
π ′Y

Masses (m) Focal Sets Trans. masses (m′) Focal Sets
0.1 [1,2] 0.01 [0,3]
0.7 [0.5,3] 0.511 [-2,5.5]
0.2 [0.1,5] 0.488 [-4.8,9.9]

TABLE 1. Distributions of Example 1

Figure 3 shows results stemming from the propagation of (mπ ′X(1:3)
,Fπ ′X(1:3)

), from the ap-

plication of probabilistic arithmetic as well as the possibility distribution covering the prop-
agation of (mRSI,X(1:3) ,FRSI,X(1:3)) and centered around [0,3]. �

Y

π(y)

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probabilistic arithmetic outer approximation
Proposed (Eq. (8)) outer approximation
Distribution derived from (mRSI,X(1:3) ,FRSI,X(1:3))

FIGURE 3. Result comparison for the model Y = X1 +X2−X3

All results from Example 1 are similar and provide reasonably good approximations.
Probabilistic arithmetic performs even better in this specific case. Thus, when T is an an-
alytical model in which each variable appears once, the approximation (mπ ′X(1:N)

,Fπ ′X(1:N)
)

is likely to be not really useful, as other techniques will have comparable efficiency and
performance.

The next example shows that, in more complex cases, using (mπ ′X(1:N)
,Fπ ′X(1:N)

) and

exactly propagating its focal sets can be of some usefulness.
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Example 2. We now consider a model T where Y is a function of two positive real-valued
variables X1,X2:

Y = T (X(1:2)) =
(X2

1 +X2
2 )

(2X1 +1)(X3
2 −1.9)

.

Figure 4 shows the behaviour of the function T (X(1:2)). We can see that, while the
function is non-decreasing in X2, it is non-monotonic in X1 (for example, if we fix X2 = 2).
Table 2 describes the possibility distributions describing the uncertainty on X1,X2.

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 2  3  4  5  6  7  8  9  10

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5

Y
T(X1,X2)

X1X2

Y

FIGURE 4. Function Y = T (X1,X2) of Example 2

πX1 πX2

mX1 FX1 mX2 FX2

0.1 [1,2] 0.5 [2,3]
0.7 [0.5,3] 0.4 [2,5]
0.2 [0.1,5.1] 0.1 [2,10]

TABLE 2. Distributions of Example 2

The random set (mπ ′X(1:2)
,Fπ ′X(1:2)

) induced by the joint distribution π ′X(1:2)
outer-approximating

(mRSI,X(1:2) ,FRSI,X(1:2)) is summarized in Table 3, as well as the result of propagating each
of its focal elements through T by using Eq.(10).

The resulting distribution has the interval [0.0113,0.5478] as support (i.e., α-cut of level
0) and [0.1036,0.2732] as mode (i.e., α-cut of level 1).

Applying probabilistic arithmetic to the above example and then Eq.(11) results in a pos-
sibility distribution having interval [0.0003,17.08] as support and [0.007,2.7868] as core.
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π ′X(1:2)
π ′Y

m′X(1:2)
F ′

X(1:2)
F ′

Y

[1,2]× [2,3] 0.01 [0.1036,0.2732]
[0.5,3]× [2,3] 0.24 T [0.1013,0.3484]
[0.5,3]× [2,5] 0.39 ⇒ [0.0395,0.3484]

[0.1,5.1]× [2,5] 0.17 [0.0368,0.5478]
[0.1,5.1]× [2,10] 0.19 [0.0113,0.5478]

TABLE 3. (mπ ′X(1:2)
,Fπ ′X(1:2)

) and propagation result.

We can see that these intervals are far more conservative than the one obtained with the
outer-approximation π ′X(1:2)

(the support of the result obtained by probabilistic arithmetic
method is more than 30 times larger than the one produced by our approximation). This is
mainly due to the fact that both X1 and X2 appears more than once in the analytic expression
of the model, and that, in such cases, applying interval arithmetic operations (that are spe-
cial cases of p-box arithmetic operations) to compute the uncertain output of a model like
T does not provide best-possible bounds. Had we applied fuzzy arithmetic to propagate
π ′X1

,π ′X2
through T , we would have obtained a distribution having [0.00035,17.21] as sup-

port and [0.04,0.71], that is somewhat closer to the result obtained by using probabilistic
arithmetic.

Note that it is possible to use methods proposed in [Baudrit and Dubois, 2005], that
make the same dependence assumption as probabilistic arithmetic (i.e., unknown indepen-
dence) but provide best-possible bounds (i.e., avoid the problem of repeated variables) and
can deal with general functions. Such methods would have given us yet another outer ap-
proximation, probably closer to the one obtained in Table 3. However, such approaches
require, to calculate probabilistic bounds on each event, the resolution of a particular linear
programming problem, and have computational complexities even higher than computing
the exact propagation of each marginal random sets with an assumption of independence
(that is, working directly with (mRSI,X(1:N) ,FRSI,X(1:N))). Using such methods is therefore
not relevant in this work.

This indicates that the proposed approximate representation and the use of interval anal-
ysis methods for implementing the extension principle Eq. (10) is likely to be useful in
those cases where the use of probabilistic arithmetic is known to perform poorly, namely
when:

• T is locally monotonic (that is, monotonic in each variable when fixing the values
of other ones), but its analytical formula, expressed as a combination of arith-
metic operations, contains multiple instances of the same variable, and cannot be
reduced to a form where each variable appears once.

• The model T is not isotone, that is extrema are not reached on boundaries of
intervals, but evaluating extrema of T remains feasible (either by heuristic searches
or analytical derivation).

Also, the use of π ′X(1:2)
as an outer-approximation does not constrain in any way the

nature of the model T (which can be a complex and non-linear model), while probabilistic
arithmetic can only be used within a restricted selection of functions.
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5. CONCLUSIONS

When working in multiple dimensions, handling the combination of marginal and in-
dependent random sets can be a tedious task, especially since the resulting joint structure
has an exponentially growing complexity. A way to reduce the complexity of this struc-
ture is to work with an approximation that benefits from the computational advantages of
a simplified framework.

Here, we have looked at the case where marginal random sets are consonant (note that
these marginal random sets can themselves be consonant approximations of non-consonant
ones [Dubois and Prade, 1990]) and are assumed to be random set independent. Even if this
is a restricted framework, it is likely to occur in many practical applications (as advocated
in the introduction), and can already be hard to deal with.

Consequently, we have proposed a transformation of marginal random sets that allows to
build a joint possibility distribution outer-approximating the exact joint structure resulting
from an assumption of independence. This outer-approximation cuts down the complexity
from exponential to linear in the number of dimensions. This drastic reduction, which
significantly alleviates the computational burden of subsequent treatments, is paid by a
potentially important loss of information, of which the user must be aware.

However, we have shown that our outer-approximation can provide good results in some
situations where other quick approximations perform poorly. Also, there will be some
situations where the use of the approximation will be sufficient to give a satisfying answer
(e.g., risk analysis), and will therefore avoid the use of computationally more demanding
methods.

Finally, since within the setting of imprecise probabilities, many other different notions
of independence have emerged [Couso et al., 2000], it would be desirable to define possi-
bilistic approximations of independence assumptions similarly to the view developed here,
simply because possibilistic approximations are computationally convenient. Some results
concerning such an approximation for the notion of epistemic independence can be found
in [Miranda and de Cooman, 2003].
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APPENDIX A. PROOF

Proof of Proposition 1. We consider the finite set

{α ∈ [0,1]|i = 1, . . . ,N, ∃x ∈Xi s.t. πi(x) = α}

of M distinct values taken by all distributions π1, . . . ,πN . We consider that these values
are indexed such that 1 = α1 > .. . > αM > αM+1 = 0, and we denote by Ei, j the α j-
cut of distribution πi. Note that the masses of each random set (mπi ,Fπi), i = 1, . . . ,N
form the same vector (mi,1, . . . ,mi,M), and to simplify notations, we will adopt the notation
m j := mi, j for some i. To prove Proposition 1, let us first express the values that should
be assigned to elements x(1:N) of X(1:N), so as to define a possibility distribution outer-
approximating (mRSI,X(1:N) ,FRSI,X(1:N)). Let us do it in terms of masses m j, j = 1, . . . ,M,
and then we will show that this expression is equivalent to the distribution π ′X(1:N)

given by
Equation (8).

Let us express the value of the outer approximation in terms of masses mi, j. First,
note that focal sets of (mRSI,X(1:N) ,FRSI,X(1:N)) have the general form ×N

i=1Ei, ji , with mass

∏
N
i=1 m ji .
For a given value j ∈ {1, . . . ,M}, the focal sets of (mRSI,X(1:N) ,FRSI,X(1:N)) that are in-

cluded in ×N
i=1Ei, j but not in ×N

i=1Ei, j−1 are, of the form

(12) {
⊗
|I|=k,i∈I

Ei, j×
⊗

i∈{1,...,N}\I
Ei, ji |k = 1, . . . ,N; I ⊆ {1, . . . ,N}; ji < j}

with
⊗

standing for Cartesian product, and |I| for the cardinality of I. For a fixed value
k, there are

(N
k

)
different subset of {1, . . . ,N} having cardinality k. Following [Dubois

and Prade, 1990], we can define a mass function defined on focal sets that are Cartesian
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products of the type ×N
i=1Ei, j (i.e., α j-cuts of distributions πi) by

m∗(×N
i=1Ei, j) =

N

∑
k=1

(
N
k

)
mk

j ∑
j1,..., jn−k< j

m j1 . . .m jn−k .

The above equation simply being the sum of masses of all elements described by Eq.(12).
As all the vectors of weights are the same, we can factorize out the polynomial expression
∑ j1,..., jn−k< j m j1 . . .m jn−k and get

m∗(×N
i=1Ei, j) =

N

∑
k=1

(
N
k

)
mk

j

(
∑
l< j

ml

)N−k

this mass function sums up to one, corresponds to a possibility distribution with focal
elements ×N

i=1Ei, j. It minimally outer-approximates (mRSI,X(1:N) ,FRSI,X(1:N)) in the sense
of Proposition 1 by construction. Now, let us consider (as done by [Dubois and Prade,
1990]) an element x(1:N) ∈ (×N

i=1Ei, j) \ (×N
i=1Ei, j−1) (recall that Ei, j ⊆ Ei, j−1 for any i ∈

{1, . . . ,N} and j ∈ {2, . . . ,M}), that is an element x(1:N) that is in the Cartesian product
of α j-cuts, but not α j−1-cuts. Note that only these elements have to be considered, since
the outer-approximation is consonant with focal sets of the type ×N

i=1Ei, j. Given the outer-
approximating mass m∗ on sets ×N

i=1Ei, j, we get

π
′
X(1:N)

(x(1:N)) = ∑
i≥ j

m∗(×N
k=1Ek,i)

= ∑
i≥ j

 N

∑
k=1

(
N
k

)
mk

i

(
∑
l<i

ml

)N−k
= α

′
j.

Given our choice of x(1:N), we also have that mini=1,...,N(πi(xi)) = α j. What we want
to check is whether, by applying Equation (8), we do have mini=1,...,N(π ′i (xi)) = α ′j. To
answer this, first notice that πi(xi) = α j = ∑

i≥ j
mi, and that Equation (8) can be rewritten

(−1)N+1( ∑
i≥ j

mi−1)N +1. Checking that mini=1,...,N(π ′i (xi)) = α ′j then amounts to proving

the following equality:

∑
i≥ j

 N

∑
k=1

(
N
k

)
mk

i

(
∑
l<i

ml

)N−k
=(−1)N+1(∑

i≥ j
mi−1)N +1.(13)

The case N = 1 is trivial, and, for N = 2, it has been originally checked by [Dubois and
Prade, 1990]. We now prove its validity for any N. First, note that(

∑
l≤i

ml

)N

=

(
m j +∑

l<i
ml

)N

=
N

∑
k=0

(
N
k

)
(mi)k

(
∑
l<i

ml

)N−k

=

(
∑
l<i

ml

)N

+
N

∑
k=1

(
N
k

)
(mi)k

(
∑
l<i

ml

)N−k

and thus

N

∑
k=1

(
N
k

)
(mi)k

(
∑
l<i

ml

)N−k

=

(
∑
l≤i

ml

)N

−

(
∑
l<i

ml

)N

.
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Let Ci := ∑
l≤i

ml the sum of masses m1, . . . ,mi, the left-hand side of equation (13) can be

rewritten

∑
i≥ j

(∑
l≤i

ml

)N

−

(
∑
l<i

ml

)N
= ∑

i≥ j

(
(Ci)N− (Ci−1)N)= (CM)N− (C j−1)N

and, likewise, the right-hand side can be rewritten

(−1)N+1(∑
i≥ j

mi−1)N +1 = (−1)N+1(−∑
i< j

mi)N +1 = (−1)N+1(−1)N(C j−1)N +1

= (−1)2N+1(C j−1)N +1 = (CM)N− (C j−1)N ,

since CM = 1 by definition. This completes the proof. �
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