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Abstract We relate the epistemic irrelevance in Walley’s behavioural theory of im-
precise probabilities to the event-tree independence due to Shafer. In particular, we
show that forward irrelevance is equivalent to event-tree independence in particular
event trees, suitably generalised to allow for the fact that imprecise rather than pre-
cise probability models are attached to the nodes in the tree. This allows us to argue
that in a theory of uncertain processes, the asymmetrical notion of epistemic irrel-
evance has a more important role to play than its more involved and symmetrical
counterpart called epistemic independence.

1 Introduction

Assessments of independence between variables are very important and useful in
modelling uncertainty, as they allow for a reduction of complexity in many prob-
lems (e.g., in building joint models from marginal information, making statistical
inferences, etc.). Here, we are interested in the case where beliefs are modelled by
lower and upper expectations for random variables or, equivalently [13], by closed
convex sets of (finitely additive) probabilities, also called credal sets [6, 7, 8]. In this
imprecise probabilities setting, there are many different notions of irrelevance and
independence, each with a different interpretation, but which generally coincide for
models involving only precise probabilities, i.e., classical Bayesian belief models;
see Couso et al. [5] for a review. Starting from given imprecise marginals, these
different types of irrelevance and independence assessments will generally lead to
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different joint belief models, whereas they all lead to the classical independent prod-
uct when marginal beliefs are modelled by precise, or Bayesian, probabilities. A
discussion of this phenomenon can also be found in De Cooman and Miranda [3].

As far as we know, there are currently two important approaches to probability
theory that involve lower and upper expectations (also called previsions or prices,
depending on the interpretation): Walley’s [13] behavioural approach, and Shafer
and Vovk’s [12] game-theoretic framework, where event trees play a central role. De
Cooman and Hermans [1, 2] have shown that these two approaches can be related to
each other, and they have introduced imprecise probability trees as a bridge between
them. By showing that many results can be imported from one theory into the other,
they make some progress towards a more unified handling of uncertainty.

Here, we take one more step towards such a unification, by studying, in Sec. 5,
how Walley’s epistemic irrelevance [13, Chap. 9] can be related to the notion of
event-tree independence that is central in Shafer’s discussion of causal reason-
ing [11]. We discuss the relevance of our findings in the Conclusions, where we also
argue why in a theory of uncertain processes, (forward) epistemic irrelevance may
be more useful than its symmetrical counterpart, epistemic independence. But let
us first recall the basic ideas behind Walley’s behavioural theory of coherent lower
previsions [13] (Sec. 2), Shafer’s event and probability trees [11] (Sec. 3), and the
imprecise probability trees that form the connection between them [1, 2] (Sec. 4).

2 Coherent lower and upper previsions

In Walley’s theory, beliefs held by a subject about the actual value of a random
variable X on a finite1 space X are modelled by coherent lower and upper previ-
sions. We call gamble a real-valued function f on X , and denote by L (X ) the
set of all gambles on X . f (X) is interpreted as an uncertain reward. A lower pre-
vision P is a real-valued map defined on some subset K of L (X ). Its conjugate
upper prevision P is then defined on the set of gambles −K := {− f : f ∈K } by
P( f ) :=−P(− f ). P( f ) is interpreted as the subject’s supremum buying price for the
uncertain reward f (X), i.e., the smallest price s such that the subject accepts to buy
f (X) for any price µ < s, meaning he accepts the uncertain transaction f (X)− µ .
Given an event A⊆X , its lower probability P(A) is the lower prevision of its indi-
cator IA, a gamble that assumes the value one on A and zero elsewhere. The upper
probability P(A) is defined likewise in terms of the upper prevision P(IA). With a
lower prevision P we can associate a closed convex set of (dominating) probability
mass functions: M (P) := {p ∈ ΣX : (∀ f ∈K )(Ep( f ) ≥ P( f )}, where ΣX is the
set (simplex) of all probability mass functions on X , and Ep( f ) := ∑x∈X f (x)p(x).
We call M (P) the credal set induced by P. A lower prevision P is said to be coher-
ent if and only if M (P) 6= /0 and P( f ) = min{Ep( f ) : p ∈M (P)} for all f in K ,
i.e., if P is the lower envelope of M (P).

1 To make this discussion as simple as possible, we restrict ourselves to finite spaces throughout,
but it is straightforward to extend our results to infinite spaces.
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3 Event trees

An event tree is composed of situations linked together, and it represents what rel-
evant events may possibly happen in what particular order in the world, according
to a particular subject. It is formally equivalent to a rooted tree in graph theory. We
restrict ourselves to trees with finite depth and width. The notions we are about to in-
troduce are illustrated in Fig. 1. A situation is a node in the tree. The initial situation
is the root of the tree. A terminal situation is a leaf of the tree; all other situations,
including the initial one, are called non-terminal. A path is a sequence of situations
from the initial to a terminal situation. A path goes through a situation s if s belongs
to it. The set Ω of all possible paths, or equivalently, of all terminal situations, is
called the sample space. Any set of terminal situations is an event. Situations im-
mediately following a non-terminal situation s are called daughters of s, and the set
of such daughters is denoted by d(s). The link between a situation s and one of its
daughters t is called a move from s to t. If a situation s is before a situation t in the
tree, we say that s strictly precedes t, and denote this as s < t; and if a situation s
is before or equal to a situation t, we say that s precedes t, and denote this as s≤ t.
Two situations are called disjoint if there is no path they both belong to. A cut is a
set of disjoint situations, such that every path goes through exactly one situation in
the cut. If each situation in a cut V (strictly) precedes some situation in another cut
U , then V is said to (strictly) precede U , and we denote this as V ≤U (V < U).

Fig. 1 Event tree with non-
terminal situations (grey),
terminal situations (black),
and root �. U = {u1, . . . ,u4}
is a cut, t < u1 and d(t) =
{u1,u2}. Also, u4 and t are
disjoint, but not u4 and ω .

t
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U

4 Imprecise probability trees

Branching probabilities ps for a non-terminal situation s are non-negative numbers
summing up to one, each of them attached to a different move originating in s: we
denote by ps(t) the probability to go from s to its daughter t; ps is a probability
mass function on d(s). A (precise) probability tree is an event tree for which every
non-terminal situation has such branching probabilities.

An imprecise probability tree2 is an event tree for which each non-terminal sit-
uation s has a closed convex set Ms of branching probabilities ps, describing a
subject’s uncertainty about which move is going to be observed just after s. With

2 Shafer [11, Chap. 12] uses the term ‘martingale tree’.
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an imprecise probability tree, we can associate coherent lower previsions. First of
all, for any non-terminal situation s, and for any gamble h on d(s), we can consider
the lower prevision Ps(h) = min{Eps(h) : ps ∈Ms}. Ps and Ms are equivalent local
predictive models for what is going to be observed immediately after s. But we can
also consider global predictive models: Let f be a gamble on the set of paths Ω .
For every situation t, we consider the lower prevision P( f |t) conditional on t: the
subject’s supremum buying price for f , given that the actual path goes through t.

The global models P(·|t) can be calculated from the local Ps by backwards re-
cursion, using the Concatenation Formula [1, 2]: for any given situation t, P( f |t) =
Pt(P( f |d(t))), where P( f |d(t)) is the gamble on d(t) that assumes the value P( f |s)
in each s ∈ d(t); and for a terminal situation ω ∈Ω , we have P( f |ω) = f (ω).

Example 1. Let us illustrate this with the successive flipping of two coins. In the
corresponding event tree:

?,?

t,?

t, t

pt,?(t,t)=1/2

t,h

pt,?(t,h)=1/2

p?,?(t,?)∈[1/4,3/4]

h,?

h, t

ph,?(h,t)∈[1/4,3/4]

h,h

ph,?(h,h)∈[1/4,3/4]

p?,?(h,?)∈[1/4,3/4]

1110

11/2

[5/8,7/8]

the labels for the situations are explicit, e.g., h,? means that the first coin has landed
‘heads’, and the second still has to be flipped. As indicated on the edges of the tree,
the subject’s beliefs about the first coin are modelled by the imprecise probability
assignments p(h) ∈ [1/4,3/4] and p(t) ∈ [1/4,3/4]. If it lands ‘heads’, we keep the
same coin, otherwise the second flip is made with a fair coin (p(h) = p(t) = 1/2).
We have also indicated the different steps in the calculation of the lower and upper
probability of getting ‘heads’ at least once, using the Concatenation Formula.

5 Forward irrelevance in event trees

Let us briefly recall the notion of forward irrelevance, discussed in detail by De
Cooman and Miranda [3], before relating it to independence in event trees.

For two random variables X1 and X2, if a subject says that X1 is epistemically
irrelevant to X2, this means that he assesses that learning the actual value of X1
won’t change his beliefs about the value of X2. For imprecise probability models,
this notion is asymmetric: the epistemic irrelevance of X1 to X2 is not generally
equivalent to the epistemic irrelevance of X2 to X1 [5, 3].

Assume that the uncertainty bears on random variables X1, . . . , XN that assume
values in the respective finite sets X1, . . . , XN . For 1 ≤ k ≤ ` ≤ N, we denote
by X`:k := ×k

i=`Xi the Cartesian product of the k− ` + 1 sets X`, . . . , Xk, and
by X`:k := (X`, . . . ,Xk) the associated joint random variable taking values in X`:k.
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Similarly, x`:k := (x`, . . . ,xk) ∈X`:k denotes a generic value of X`:k. The random
variables X1, . . . ,XN are assumed to be logically independent, meaning that X`:k can
assume all values in X`:k, for all 1 ≤ ` ≤ k ≤ N. A gamble f defined on X1:N is
called X`:k-measurable if f (x1:N) = f (y1:N) for all x1:N and y1:N in X1:N such that
x`:k = y`:k. We denote by L (X`:k) the set of all X`:k-measurable gambles, and by
f`:k a generic gamble in this set. Of course, we identify the index ‘k : k’ with ‘k’.

An important problem is how to build joint belief models from partial ones. Let
us consider the specific example where the Xk constitute a stochastic process with
time variable k, implying in particular that the subject knows in advance that the
value of random variable X` will be revealed to him before that of X`+1, where
` = 1,2, . . . ,N−1. This leads to a special event tree (also called a standard tree [11,
Chap. 2]) where the nodes s have the general form x1:k ∈X1:k, k = 0, . . . ,N. For
k = 0 there is some abuse of notation, as we let X1:0 := {�} and x1:0 := �. The sets
X1:k constitute special cuts of the tree, where the value of Xk is revealed. We have
X1:1 < X1:2 < · · ·< X1:N , and this sequence of cuts is also called a standard filter
[11, Chap. 2]. It is clear that d(x1:k) = {x1:k}×Xk+1 for k = 0,1, . . . ,N− 1. The
sample space of such a tree is Ω = X1:N , and with the variable Xk there corresponds
a set L (Xk) of Xk-measurable gambles on this sample space. For instance, in
the standard tree of Example 1, gambles characterising the second coin flip are such
that f (t,h) = f (h,h) and f (t, t) = f (h, t). Below, we see the first two cuts of another
standard tree, with X1 = {a,b} and X2 = {α,β ,γ}.

a b

(a,α) (a,β ) (a,γ) (b,α) (b,β ) (b,γ)

X1

X1:2

A natural way to specify partial beliefs consists in attaching, as explained in the
previous section, to each of the non-terminal nodes x1:k a (coherent) local predictive
lower prevision Px1:k

on L (d(x1:k)), i.e., on L (Xk+1), where k = 0,1, . . . ,N− 1.
This represents a subject’s beliefs about the value of Xk+1 given that the k previ-
ous variables X1:k assume the values x1:k. For standard imprecise probability trees,
the Concatenation Formula given above for deriving the global lower previsions
P(·|x1:`) on L (X1:N) from the local models Px1:k

completely coincides with the
formulae for Marginal Extension, derived by Miranda and De Cooman [9].

A subject may make an assessment of forward irrelevance, meaning that for
1≤ k≤N−1, his beliefs about the ‘future’ random variable Xk+1 won’t be changed
by learning new information about the values of the ’past’ random variables X1:k:
the past random variables X1, . . . , Xk are epistemically irrelevant to the future ran-
dom variable Xk+1, for 1≤ k ≤ N−1. This is expressed by the following condition
involving the local models: for all 0 ≤ k ≤ N− 1, any gamble fk+1 in L (Xk+1),
and all x1:k in X1:k:

Px1:k
( fk+1) = Pk+1( fk+1), (1)
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where Pk+1 is the so-called marginal lower prevision on L (Xk+1), which expresses
the subject’s beliefs about the value of Xk+1, irrespective of the values assumed by
the other random variables. Invoking the Concatenation Formula now leads to a very
specific way of combining the marginal lower previsions P1, . . . , PN into a joint
lower prevision, reflecting the assessment of forward irrelevance. This joint lower
prevision, called the forward irrelevant product, is studied in detail by De Cooman
and Miranda [3], who also use it to prove very general laws of large numbers [4].

We now proceed to show that forward irrelevance is exactly the same thing as
Shafer’s notion of event-tree independence, when applied to standard imprecise
probability trees. In Shafer’s [11] terminology, a situation s influences a variable
X if there is at least one situation t ∈ d(s) such that the subject’s beliefs about the
value of X are modified when moving from s to t; for imprecise probability trees,
this means that there should be at least one gamble f whose value depends on the
outcome of X for which P( f |s) 6= P( f |t). Two variables X and Y are called event-
tree independent if there is no situation that influences both of them.

In a standard imprecise probability tree, a situation x1:k influences a variable Xm
if there is at least one situation x1:k+1 in d(x1:k) and at least one gamble fm on Xm
such that P( fm|x1:k) 6= P( fm|x1:k+1). The only situations x1:k that can influence Xm
are such that k < m, since in all other situations, the value of Xm has already been
revealed ‘for some time’. In addition, it is easy to check that Xm is always influenced
by any situation x1:m−1 in the cut X1:m−1 right before the value of Xm is revealed.

Theorem 1. Let X1, . . . , XN be N random variables. Then there is forward irrele-
vance, or in other words, the random variables X1:k are epistemically irrelevant to
Xk+1 for 1≤ k≤N−1 if and only if the random variables X1, . . . , XN are event-tree
independent in the corresponding standard imprecise probability tree.

Proof. We deal with the ‘only if’ part first. Suppose the random variables X1:N
are forward irrelevant. Consider any Xk and fk ∈L (Xk), where 1 ≤ k ≤ N. Then
it follows from the forward irrelevance condition (1) and the Concatenation For-
mula that Pk( fk) = Px1:k−1

( fk) = P( fk|x1:k−1) for all x1:k−1 in X1:k−1. Applying
the Concatenation Formula again leads to P( fk|x1:k−2) = Px1:k−2

(P( fk|x1:k−2, ·)) =
Px1:k−2

(Pk( fk)) = Pk( fk), and if we continue the backwards recursion, we see that

Pk( fk) = P( fk|x1:k−1) = P( fk|x1:k−2) = · · ·= P( fk|x1:2) = P( fk|x1) = P( fk|�).

This implies that the only situations that (may) influence Xk are the ones in the
cut X1:k−1 immediately before Xk is revealed. Therefore, no situation can influence
more than one variable, and there is event-tree independence.

Next, we turn to the ‘if’ part. Assume that all variables are event-tree indepen-
dent in the standard tree. This implies that no variable Xk can be influenced by a
situation x1:` corresponding to a time ` < k−1 [If Xk were influenced by such a sit-
uation, then we know that this situation also always influences X`+1, and `+1 < k,
a contradiction]. So for all x1:k−1 ∈X1:k−1 and all fk ∈L (Xk):

P( fk|x1:k−1) = P( fk|x1:k−2) = · · ·= P( fk|x1:2) = P( fk|x1) = P( fk|�).
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Now of course P( fk|�) = P( fk) = Pk( fk), where Pk is the marginal lower pre-
vision for Xk, and it follows from the Concatenation Formula that P( fk|x1:k−1) =
Px1:k−1

( fk). This shows that (1) is satisfied, so there is forward irrelevance. ut

6 Conclusions

What is the message we want to convey in this paper? In the theory of coherent
lower previsions [13], there are essentially two behavioural notions that generalise
classical independence:3 epistemic irrelevance and the derived notion of epistemic
independence. Assessing that two random variables X1 and X2 are epistemically in-
dependent amounts to assessing that (i) X1 is epistemically irrelevant to X2, meaning
that getting to know the value of X1 doesn’t change our subject’s beliefs about X2;
and (ii) X2 is epistemically irrelevant to X1.

Suppose we want to consider a theory of uncertain processes where probabilities
aren’t necessarily precise. What will be the most useful or meaningful counterpart of
the important notion of independence in the classical theory of random processes?
There are a number of reasons for preferring the asymmetric notion of epistemic
irrelevance, and its generalisation to many variables, called forward irrelevance, to
that of epistemic independence. We begin with arguments of perhaps less impor-
tance, and then go on to present the most compelling one.

First of all, when a notion that is (more or less) automatically symmetrical, breaks
apart into two asymmetrical counterparts when using a more powerful language,
symmetry becomes something that has to be justified: it can’t be imposed without
giving it another thought.

Secondly, an assessment of epistemic independence is stronger, and leads to
higher joint lower previsions. As lower previsions represent supremum buying
prices, higher values represent stronger commitments, and these may be unwar-
ranted when it is only epistemic irrelevance that our subject really wants to model.

Thirdly, joint lower previsions based on an epistemic irrelevance assessment
are generally speaking straightforward to calculate, as the discussion of the Con-
catenation Formula in Sec. 5 testifies. But calculating joint lower previsions from
marginals based on an epistemic independence assessment is quite often a very com-
plicated affair [13, Sec. 9.3.2].

Finally, and most importantly, when considering an uncertain process, the subject
knows that the values of the random variables Xk will be revealed one after the other,
and that the value of Xk will be revealed before that of Xk+1. If he states that Xk and
Xk+1 are epistemically independent, this amounts to his assessing that (i) getting to
know the value of Xk won’t change his beliefs about Xk+1 [forward irrelevance]; and
(ii) getting to know the value of Xk+1 won’t change his beliefs about Xk [backward
irrelevance]. But since the subject knows that he will always know the value of Xk

3 There are other generalisations, such as strong independence [5], but these have a sensitivity
analysis interpretation, rather than a behavioural one; see also [13, Chap. 9]. Our comments below
don’t bear on such other types of independence.
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before that of Xk+1, (ii) is effectively a counter-factual statement for him: “if I got
to the value of Xk+1 first, then learning that value wouldn’t affect my beliefs about
Xk”. It’s not clear that making such an assessment has any real value, and we feel
it is much more natural in such situations context to let go of (ii) and therefore to
resort to epistemic (forward) irrelevance.

This line of reasoning can also be related to Shafer’s [10] idea that conditioning is
never automatic, and must always be associated with a protocol. A subject can only
meaningfully condition a probability model on events that he envisages may happen
(according to the established protocol). In the specific situation described above,
conditioning the belief model about Xk on the variable Xk+1 could only legitimately
be done if it were possible to find out the value of Xk+1 without getting to know
that of Xk, quod non. Therefore, it isn’t legitimate to consider the conditional lower
prevision Pk(·|Xk+1) expressing the beliefs about Xk conditional on Xk+1, and we
therefore can’t meaningfully impose (ii), as it requires that Pk(·|Xk+1) = Pk. Again,
this leads to epistemic (forward) irrelevance, instead of epistemic independence.

In his book on causal reasoning [11], Shafer seems to propose the notion of an
event tree in order to develop and formalise his ideas about protocols and condition-
ing. We have seen in Theorem 1 that for standard event trees, which correspond to
uncertain processes, the general notion of event-tree independence that he develops
in his book, is effectively equivalent to the notion of forward irrelevance.
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