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The need to differentiate between epistemic and aleatory uncertainty is now well admitted by
the risk analysis community. One way to do so is to model aleatory uncertainty by classical
probability distributions and epistemic uncertainty by means of possibility distributions, and
then propagate them by their respective calculus. The result of this propagation is a random
fuzzy variable. When dealing with complex models, the computational cost of such a propa-
gation quickly becomes too high. In this paper, we propose a numerical approach, the RaFu
method, whose aim is to determine an optimal numerical strategy so that computational costs
are reduced to their minimum, while using the theoretical framework mentioned above. We
also give some means to take account of the resulting numerical error. The benefits of the
RaFu method are shown by comparisons with previous methodologies.
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1. Introduction

Taking uncertainties into account has become of prime importance in many indus-
trial applications. It is particularly true in safety studies, where misleading represen-
tations of uncertainties can lead to incautious and therefore potentially dangerous
decisions.
Nowadays, a large majority of uncertainty analysts uses probabilistic models to

represent uncertainties and Monte-Carlo simulations to propagate them through
a model. In such approaches, both aleatory uncertainties (i.e due to the natural
variability or randomness of an observed phenomenon) and epistemic uncertainties
(i.e. due to the imprecision or poverty of available information) are modeled by
probabilities. However, many arguments (Walley 1991, Helton and Oberkampf 2004,
Ferson and Ginzburg 1996) converge to the conclusions that classical probabilities
cannot adequately model epistemic uncertainties.
Therefore, recent works (Helton and Oberkampf 2004) have focused on method-

ologies able to handle both aleatory and epistemic uncertainties in an unified frame-
work. One such method, proposed and justified by various authors (Bardossy and
Fodor 2004, Ferson et al. 2003, Baudrit et al. 2006), consists in mixing probabilis-
tic convolution (for aleatory uncertainty) with fuzzy calculus (for epistemic un-
certainty) to model and propagate uncertainties. This theoretical approach, often
referred to as hybrid approach, is the one considered here. Recent works (Bau-
drit et al. 2008) show that such methods provides results different from classical
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2-D Monte-Carlo simulations, usually used to differentiate between aleatory and
epistemic uncertainties in classical probabilistic framework.
As propagating uncertainties with this approach often involves high computa-

tional costs, its domain of application has been limited so far to relatively simple
models. In order to apply it to fields (such as nuclear safety) where models can
be very complex and where computation costs constitute an important issue, more
efficient propagation methods are needed.
This is why we propose in this work a new numerical method to propagate uncer-

tainties with the above methodology. This method, based on sampling techniques,
intends to reduce computational costs. It also allows one to address numerical ac-
curacy issues, by using convergence results of Monte-Carlo methods and notions
of order statistics (Lecoutre and Tassi 1987, Conover 1999). The key point of the
method lies in the pre-processing of information related to the final desired result
of the propagation, rather than post-processing it (as usually suggested).
Although this paper focuses on issues regarding safety studies, and thus on the

estimation of uncertainties concerning threshold exceeding (i.e. cumulative distri-
bution and so-called survival functions), the method presented here is not confined
to such type of information.
This paper is organized as follows: Section 2 recalls theoretical bases used for rep-

resenting and propagating aleatory and epistemic uncertainties in hybrid method-
ologies. The resulting output is no longer a random variable (as in classical prob-
abilistic modelling) but a random fuzzy variable. In Section 3, we recall existing
post-processing methods that extract relevant information from the model output,
and discuss their computational cost. Section 4 introduces the proposed numerical
treatment of aleatory and epistemic uncertainties (called the RaFu method, RaFu
standing for Random/Fuzzy), that improves computational efficiency by avoiding
the construction of the whole random fuzzy variable when possible. Finally, the
RaFu method is illustrated on a simplified application in Section 5.

2. Representation and propagation of aleatory and epistemic uncertainties

In this section, we first recall basics about probability and possibility theories, the
former being used to represent aleatory uncertainty, and the latter to represent
epistemic uncertainty. Then, we explain how these two types of uncertainties are
propagated through a model into a random fuzzy variable. Since our work focuses
on the numerical treatment of hybrid-type approach (i.e. combining probability and
possibility calculi), we do not intend to deeply discuss the advantages and limits of
the two uncertainty theories. We refer to related works (Bardossy and Fodor 2004,
Ferson et al. 2003, Baudrit et al. 2006) for detailed discussions about theoretical
justifications.

2.1 Representing uncertainty

As mentioned previously, one can distinguish two main kinds of uncertainty.
Aleatory uncertainty is due to the natural variability or randomness of an ob-
served phenomenon. It can be, for instance, the variability inside a given population
(e.g. gaussian distribution to describe the weight of a given nationality, exponen-
tial distribution corresponding to time failures of some class of components) or the
variability of observed outcomes for a particular situation (e.g. dice tossing).
Epistemic uncertainty results from a lack of knowledge, of information. It can

come from systematical error (e.g. a measurement which is not fully reliable), from
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a poor quantity of data or from subjective uncertainty (e.g. an expert providing
imprecise valued quantities).
Recent works (Walley 1991, Helton and Oberkampf 2004, Ferson and Ginzburg

1996) have shown that classical probabilities tend to confuse the two kinds of un-
certainty and are not tailored to properly handle both of them. Other or more
general frameworks thus need to be developed to separately treat both uncertain-
ties. As already mentioned, we consider here that aleatory uncertainty is modeled
and propagated by using classical probability theory (Feller 1971), while epistemic
uncertainty is modeled and propagated with the help of possibility theory (Dubois
and Prade 1988).

2.1.1 Aleatory uncertainty and probability theory

Given a probability space (Ω,F , P ), a probability measure P is defined as a
mapping from F to [0, 1], such that P (Ω) = 1, P (∅) = 0 and for all A,B ∈ F ,
P (A ∪ B) = P (A) + P (B) − P (A ∩ B). Here, we consider that F is either the
power set of Ω (when Ω is discrete) or the Borel Algebra when Ω = R, the real line,
therefore we will not mention F further on. From a probability measure P , we can
define its probability distribution function p as the mapping from the sample space
Ω (e.g. 1 to 6 in the case of a dice) to [0, 1] such that for any ω ∈ Ω, p(ω) = P ({ω}).
For any subset A ⊆ Ω, the probability measure is retrieved by

P (A) =
∑
w∈A

p(w) ∀A measurable, (discrete case) ,

P (A) =
∫
A
p(w)dw ∀A measurable, (continuous case)

and P (A) measures the likelihood of the event A
If X is a real random variable associated to P , the cumulative distribution func-

tion of X is a mapping FX : R→ [0, 1] defined for all x ∈ R as

FX(x) = P (X ≤ x) =
∫ x

−∞
p(w)dw

and which has a quasi-inverse given by F−1
X . If α is an uniform random variable on

[0, 1], then it is well known that the random variable X = F−1
X (α) is distributed

according to FX .
This means that we can simulate a random variable X by simulating an uniform

law on [0, 1] and associate to each sampled value αi the corresponding element
x = F−1

X (αi).

2.1.2 Epistemic uncertainty and possibility theory

Imprecise knowledge about a variable having a precise value can be described
by the means of possibility theory (Dubois et al. 2000) . In particular, possibil-
ity distributions are well fitted to represent information about a variable given in
terms of nested confidence intervals (a natural way to express uncertainty about
variables, already considered by Cox (Cox 1958) and Birnbaum (Birnbaum 1961)).
A possibility distribution is defined as a mapping π : Ω→ [0, 1] which is here upper
semi-continuous and normalized (∃x ∈ Ω s.t. π(x) = 1). It is formally equivalent
to the fuzzy set µ(x) = π(x). Distribution π describes the more or less plausible
values of some uncertain variable X. To a possibility distribution are associated
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two measures, namely the possibility (Π) and necessity (N) measures, which read:

Π(A) = sup
x∈A

π(x) N(A) = inf
x 6∈A

(1− π(x))

The possibility measure indicates to which extent the event A is plausible, while
the necessity measure indicates to which extent it is certain. They are dual, in the
sense that Π(A) = 1−N(A), with A the complement of A. They obey the following
axioms:

Π(A ∪B) = max(Π(A),Π(B)) N(A ∩B) = min(N(A), N(B))

An α-cut of π is the interval [xα, xα] = {x, π(x) ≥ α}. The degree of certainty
that [xα, xα] contains the true value of X is N([xα, xα]) = 1 − α. Conversely, a
collection of nested sets Ai with (lower) confidence levels λi can be modeled as a
possibility distribution, since the α-cut of a (continuous) possibility distribution can
be understood as the probabilistic constraint P (X ∈ [xα, xα]) ≥ 1−α, thus linking
possibility distributions with imprecise probabilities (Dubois and Prade 1992, de
Cooman and Aeyels 1999). In this setting, degrees of necessity are equated to lower
probability bounds, and degrees of possibility to upper probability bounds.
As there is a one-to-one correspondence between levels α ∈ [0, 1] and the cor-

responding α-cut [xα, xα], a possibility distribution can be simulated, similarly to
probability distributions, by sampling values from an uniform law on [0, 1] and by
associating to each sampled value αi the corresponding α-cut [xαi , xαi ].

2.2 P-boxes

The main question of safety studies is often to know, given uncertainties on inputs,
whether or not the output value exceeds a given threshold. In a purely probabilistic
framework, if the value of this threshold is x, the uncertainty on the exceeding
of this threshold is given by the cumulative distribution function (CDF) F (x) =
P ((−∞, x]).
If epistemic uncertainty is taken into account, the uncertainty over the exceeding

of a threshold is no longer precise, and is given by a pair of lower and upper
cumulative distribution functions [F , F ], usually called probability boxes (Ferson
et al. 2003)1 (p-boxes for short). The uncertainty on the exceeding of a threshold
x is then expressed by a pair of values [F (x), F (x)], bounding the potential values
of F (x) = P ((−∞, x]). The width of the interval reflects our lack of information
concerning some input parameters.

2.3 Propagating both uncertainties into a random fuzzy variable

Hybrid numbers (i.e. random fuzzy variables) as a means to express conjointly
epistemic uncertainty and aleatory uncertainty were first proposed by Kaufmann
and Gupta (Kaufmann and Gupta 1985). Latter on, methods based on this idea were
proposed by Baudrit et al. (Baudrit et al. 2006), by Ferson and Ginzburg (Ferson
and Ginzburg 1996) and by Cooper et al. (Cooper et al. 1996).
We consider that uncertainty bearing on input variables X1, . . . , XN has to be

propagated through a model Y = T (X1, . . . , XN ) with Y , the real-valued output.

1It must noted that, in the imprecise case, different sets of probabilities can be represented by the same
p-box, whereas in the precise case, one cumulative distribution corresponds to one precise probability
distribution, and inversely
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We consider that X1, . . . , Xk are random variables described by precise probabil-
ity distributions p1, . . . , pk, and Xk+1, . . . , XN are fuzzy variables (i.e. imprecisely
known variables) described by possibility distributions πk+1, . . . , πN , all assuming
values on the real line. Given this model, Kaufmann and Gupta originally proposed
to propagate both types of uncertainty according to their respective calculus: prob-
abilities by probabilistic convolution and possibility distributions by the means of
extension principle (Dubois et al. 2000). When variables X1, . . . , Xk take values
x1, . . . , xk, the extension principle reads, for any y ∈ R

πT (y) = sup
xk+1,...,xN ,T (x1,...,xN )=y

min(πk+1(xk+1), . . . , πN (xN )). (1)

This extension principle extends classical interval computation in the following
way: the distribution πT (y) can also be obtained by doing level-wise interval com-
putation (Moore 1979, Jaulin et al. 2001), since we have

[y
α
, yα] = T (x1, . . . , xk, [xα, xα]k+1, . . . , [xα, xα]N ), ∀α ∈ [0, 1] (2)

This shows that extension principle assumes a complete correlation between α-cuts
(i.e. between confidence levels), and does not generally encompass the result of clas-
sical probabilistic convolution. There exists other extensions of interval computa-
tions (Regan et al. 2004) proposing to deal with epistemic uncertainty by the means
of imprecise probabilities. They usually provide more conservative results than the
extension principle and, when applied to complex models, present a computational
complexity even higher than the method considered here. Such extensions are not
studied here. We also assume that dependencies between probability distributions
p1, . . . , pk are well known, so that the joint distribution p(1:k) of ×i=1,...,kXi is well
defined.
As finding the analytical and exact solution of the propagation is impossible in

most situations, propagation is usually obtained by the following procedure:

(1) Generate Mp samples x(1:k)i := {x1,i, . . . , xk,i}, i = 1, . . . ,Mp stemming
from the joint distribution p(1:k) of ×i=1,...,kXi by usual sampling techniques
(Monte-Carlo, LHS, MCMC, . . . )
(2) For each sample x(1:k)i , i = 1, . . . ,Mp, build a discretized approxima-
tion π̃Ti of the propagated possibility distribution πTi (see Equation (1)) by
computing (2) for a finite collection 0 ≤ α1 < . . . < αMπ

≤ 1 of Mπ α-cuts
(3) Assign a probability mass of 1/Mp to each obtained distribution π̃Ti , i =
1, . . . ,Mp.

Values and intervals sampled from probability and possibility distributions are il-
lustrated in Figure 1. The result of the whole procedure is an hybrid number, that
is a probability distribution bearing on possibility distributions π̃Ti , formally equiv-
alent to a random fuzzy variable. It is illustrated in Figure 2. For simplicity of
notation, we denote this random fuzzy variable, which describes our uncertainty on
Y resulting from the propagation, by (p(1:k), π̃)T . Note that this procedure requires
to achieve Mp×Mπ interval propagations, with the value Mπ being usually around
20.

3. Information extraction: existing post-processing techniques

Now that imprecision is explicitly modeled in our uncertainty representations, the
probability of an event resulting from this propagation is no longer precise, but is



November 17, 2009 9:41 International Journal of General Systems gGEN_ChojnackiAll

6

0

1

FX1(x1)

x1

Variable X1

. . .

Aleatory uncertainty : K random variables

0

1

FXk(xk)

xk

Variable Xk

0

1

αk+1

α cut of Xk+1

Variable Xk+1

. . .

Epistemic uncertainty : N −K fuzzy variables

0

1

αN

α cut of XN

Variable XN

Figure 1. Sampling of random and fuzzy variables.
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α1
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Figure 2. Random fuzzy variable.

instead delimited by lower and upper bounds. As analyzing the intrinsic informa-
tion conveyed by the full random fuzzy variable is very difficult, it is necessary to
propose some way to summarize or extract the useful information from the ran-
dom fuzzy variable (p(1:k), π̃)T . For this reason, Ferson and Ginzburg (Ferson and
Ginzburg 1996) and Baudrit et al. (Baudrit et al. 2006) have proposed different
post-processing of (p(1:k), π̃)T so that the resulting summary would be in the shape
of one or multiple p-boxes.
Denote [y

α
, yα]i the α-cut of the ith fuzzy set π̃Ti , with i = 1, . . . ,Mp. For each

value α ∈ [0, 1], we thus have a collection of Mp intervals. If we order and reindex
the Mp values y

α
such that yi

α
≤ yj

α
iff i ≤ j, and assign to each of them a

probability mass 1/Mp, we can build the associated cumulative distribution function
Fα such that Fα(yi

α
) = 1/Mp. Upper values yj can be treated likewise to obtain

an upper distribution Fα. This can be done for every value α ∈ [0, 1], and since
the α-cuts of a fuzzy set are nested, we have that yi

α
≥ yi

β
(yiα ≤ yiβ) if α ≥ β,

implying that Fα(x) ≥ F β(x) (Fα(x) ≤ F β(x)) if α ≥ β. This shows how we can
extract a collection of p-boxes [Fα, Fα] from the random fuzzy variable (p(1:k), π̃)T

(see Figure 3).
Although the information conveyed by the collection of p-boxes [Fα, Fα] is poorer

than the information contained in the whole random fuzzy variable (information is
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Fα2 Fα1

Fα1
Fα2

Figure 3. Pairs of lower and upper cumulative distribution functions extracted from the random fuzzy
variable of figure 2 (α1 ≥ α2).

lost by projecting the structure on events of the type (−∞, x]), it is sufficient in
most applications encountered in safety or reliability studies.
Nevertheless, the whole collection of p-boxes [Fα, Fα] is still a complex repre-

sentation, and in order to be useful to a decision maker, it should be summarized
further. This is the objective of post-treatments recalled in the next section and
proposed by Ferson and Ginzburg (Ferson and Ginzburg 1996) and by Baudrit et
al (Baudrit et al. 2006).

3.1 Ferson’s post-treatment

Ferson proposes to fix one or multiple confidence levels α and then to build the lower
and upper cumulative distributions [Fα, Fα] associated to this (these) particular
value(s).
For example, choosing the value α = 1 and the p-box [F 1, F 1] corresponds to

an "optimistic" behavior regarding epistemic uncertainty, since the imprecision of
the result is minimized, while choosing the value α = 0 and the p-box [F 0, F 0]
corresponds to "pessimistic" behavior, imprecision being maximized in this case. All
other p-boxes [Fα, Fα] are between these pairs and represent intermediate behavior
(Figure 4).

0

1
F 0 F 1Fα

F 1

Fα
F 0

Figure 4. Pairs of lower and upper cumulative distribution functions associated to Ferson’s post-treatment
(0<α<1).

Note that, even in the most optimistic case, there can still remain some impre-
cision, unless the α-cut of level 1 of every possibility distribution πk+1, . . . , πN is a
single number (e.g. reference value, mode, . . . ).

3.2 Baudrit et al.’s post-treatment

In the post-processing of Baudrit et al., called "homogeneous" post-processing, only
one lower and one upper cumulative distributions, here respectively denoted F av
and F av, are built. The resulting p-box [F av, F av] corresponds to the average taken
over all p-boxes [Fα, Fα], namely:

F av =
∫ 1

0
Fαdα F av =

∫ 1

0
Fαdα
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and the p-box [F av, F av] is always between the p-boxes [F 0, F 0] and [F 1, F 1] (Fig-
ure 5).

0

1
F 0 F 1Fα

F 1

Fα
F 0∫

· dα

0

1

Fav
Fav

Figure 5. Pair of lower and upper cumulative distribution functions associated to Baudrit et al.’s post-
treatment.

Both Ferson’s and Baudrit et al.’s post-treatments require to first build the whole
random fuzzy variable (as described in Section2.3). As mentioned before, this strat-
egy can be computationally costly: let us suppose thatMp = 100 samplings are done
on the k first parameters and that for each of them the corresponding fuzzy num-
ber is approximated by taking Mπ = 21 α-cuts (α = (0, 0.05, ..., 1)). Then, 2100
interval calculations are needed to build the final result.
In many applications, assuming one can afford so much computations is unreal-

istic. This is particularly true in fields such as nuclear safety, spatial exploration or
aeronautics (Oberguggenberger et al. 2007), where very complex models are often
used. Moreover, although they both propose to deal with complex models by using
numerical discretization, neither Baudrit et al. nor Ferson consider the question of
numerical accuracy. That is why we propose in the next section a new numerical
method (called RaFu method, for Random/Fuzzy) that addresses the problem of
evaluating numerical accuracy and allows one to reduce the number of required
computation to reach a given result by pre-processing rather than post-processing
a part of the information.

4. The RaFu method

The RaFu method uses the same theoretical framework as the one considered in
Section 2. It intends to minimize the number of required computations to reach a
given response. As pointed above, building the whole random fuzzy variable can be
very costly and, in those situations where we are only interested in some specific
features of the information contained in it, unnecessary.
Briefly, given the input distributions p1, . . . , pk, πk+1, . . . , πN and a final desired

response, the method consists in sampling from these distributions in an optimized
way, so that a minimal amount of samples is propagated in order to reach the
desired response with a given numerical accuracy. The method is fully detailed in
the sequel.
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[y, y]i = T (F−1
X1

(α1,i), . . . , F−1
Xk

(αk,i), [xαk+1,i
, xαk+1,i ]k+1, . . . , [xαN,i , xαN,i ]N )

Figure 6. Illustration of sample matrix

4.1 Pre-processing rather than post-processing

In practical applications, the quantity that has to be evaluated is often known
before propagating. It can be the potential mean value of the output, the value of
a particular percentile or the probability of exceeding a given value. In other cases,
one has an idea about the behavior to adopt. For example, if the safety study
concerns a critical issue (e.g. transfer of dangerous polluting elements), it is natural
to adopt a very conservative and cautious attitude (i.e. in our case, an α close to
zero), while in situations where the behavior to adopt is more ambiguous, one can
choose to adopt a balanced attitude (i.e. use Baudrit et al.’s post-processing).
The key point of the RaFu method is to replace the classical post-processing step

by a pre-processing one. In this pre-processing, the decision maker (DM)1 provides
a triplet of parameters (γS , γE , γA) that corresponds to the quantity he’s interested
in and the numerical precision he wants to reach.
Once these parameters (γS , γE , γA) have been specified, the RaFu method con-

sists in building an optimal sampling strategy that allows one to reach the desired
quantity with a minimal amount of calculations. This strategy corresponds to a
number M of specific samples. Each sample consists of N values, the k first being
single values sampled from p1, . . . , pk according to γS , while the N −k other values
are α-cuts (generally intervals) sampled from πk+1, . . . , πN according to parameter
γE . The result, illustrated by Figure 6, is a matrix of M samples that must then
be propagated through the model T .

4.1.1 Parameter γS

γS is the parameter related to the aleatory uncertainty. It consists of two sub-
parameters:

• γSi concerns the dependence structure between input variables X1, . . . , Xk

and determines how values are to be sampled from p1, . . . , pk. In other words, it
specifies the values α1,i, . . . , αk,i, i = 1, . . . ,M in Figure 6.
Usual dependence structures that can be reproduced by numerical sampling and
can be specified in γSi are:
• stochastic independence between X1, . . . , Xk,
• rank correlations between variables (Iman and Conover 1982),
• specifications of copulas (Nelsen 2005),
• direct specification of joint distributions.

1This decision maker can assume many forms, it can be a committee, an official guideline, a single indi-
vidual, . . .
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The k first values of each sample are then sampled (or reordered after sampling)
accordingly to the specified dependence structure. Note that the computational
cost of applying the above type of dependence structures is negligible, especially
when compared to calculation time of complex models.
• γSo concerns the stochastic quantity the DM is interested in. It provides which
information must be extracted from propagated data [y, y]i, i = 1, . . . ,M .
In safety studies, stochastic quantities that the DM usually wants to evaluate are
typically:
• the mean and/or the variance (γSo := {E(Y ), V (Y )}),
• the value of a given percentile (γSo := {q%}),
• the uncertainty of exceeding a given threshold (γSo := {F (x)}, with x the

threshold value),
• the whole cumulative distribution function (γSo := {F (x)} ∀x).

γS thus corresponds to information used in usual sampling methods where un-
certainty is modeled entirely by classical probabilities.

4.1.2 Parameter γE

γE is the parameter related to epistemic uncertainty and to the DM behavior with
regard to this uncertainty. It determines how α-cuts or values from πk+1, . . . , πN
are to be sampled.
First, we assume (without loss of generality) that Mp values have been sampled

from the joint distribution p(1:k) of ×i=1,...,kXi, and we denote them
x(1:k)i := {F−1

X1
(α1,i), . . . , F−1

Xk
(αk,i)}, i = 1, . . . ,Mp. Then, typical strategies used

in the RaFu method for the choice of parameter γE are, for instance:

Strategy 1 Fixed α (γE := {α}): associate to any x(1:k)i the cuts of fixed
level α of distributions πk+1, . . . , πN . This comes down to consider, in
Figure 6, that αj,i = α for j = k + 1, . . . , N , i = 1, . . . ,Mp. For the
DM, this choice is equivalent to adopt a given behavior with respect to
epistemic uncertainty, ranging from total pessimism (γE := {α = 0})
to total optimism (γE := {1}).

Strategy 2 Vector α̃ = (α1, . . . , αMπ): duplicate the Mp samples x(1:k)i Mπ

times, thus resulting in Mp ×Mπ samples x(1:k)i,j , i = 1, . . . ,Mp, j =
1, . . . ,Mπ. For a fixed i, x(1:k)i,j is constructed by associating to sample
x(1:k)i the α-cuts [xαk+1,j

, xαk+1,j ]k+1, . . . , [xαN,j , xαN,j ]N with αk+1,j =
. . . = αN,j = αj , the jth element of vector α̃. This is equivalent to apply
the previous strategy Mπ times. For example, the vector of values can
be the couple total pessimism/optimism (γE := { α = (0, 1)}) or
a given number of discretization steps of each distribution (γE :=
{ α = (0/n, . . . , i/n, . . . , n/n = 1)}, with n the number of steps). In
this last case, we retrieve the usual propagation method described in
Section 2.3.

Strategy 3 Partially randomized α: for each sample x(1:k)i , sample (inde-
pendently) a value αr from a uniform law on [0, 1] and associate
to x(1:k)i the α-cuts [xαk+1,i

, xαk+1,i ]k+1, . . . , [xαN,i , xαN,i ]N such that
αk+1,i = . . . = αN,i = αr. As we shall see later, this kind of sampling
allows to "average" over all α-cuts.

Strategy 4 Totally randomized α: for each sample x(1:k)i , let
αr1 , . . . , αrN−k be N − k values sampled from independent uni-
form laws on [0, 1], this strategy associates to x(1:k)i the cuts
[xαk+1,i

, xαk+1,i ]k+1, . . . , [xαN,i , xαN,i ]N with αk+1,i = αr1 , . . . , αN,i =
αrN−k . This kind of sampling simulates the so-called notion of random
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set independence in imprecise probabilities. It can be interpreted
as an assumption of independence between the sources evaluating
the epistemic uncertainties (sensors, experts, . . . ), or, if possibility
distributions are to be interpreted as sets of probabilities (Dubois and
Prade 1992), as a means to simulate stochastic independence among
the probabilities in these sets (Couso et al. 2000). Some dependencies
can also be assumed between the uniform laws on which α-cuts
are sampled (Alvarez 2006). Nevertheless, how such dependency
structures between possibility distributions can be interpreted is still
unclear, and requires further research.

Each of the above strategies suggests different choices of {αi,j}i=k+1,...,N ;j=1,...,M

in matrix of Figure 6. The choice of one of them also influences the final number
of samples to be propagated: this number will be Mp in the case of Strategies 1,3
and 4 and Mp×Mπ in the case of Strategy 2 (where Mπ is the number of different
α-levels chosen by the DM). The strategy selection before the propagation is one
of the main advantage of the RaFu method. In many situations, it leads to less
propagation than the usual Mp × Mπ propagations required to build the whole
random fuzzy variable (see Section 2.3).
Note that, since Monte-Carlo sampling is primarily a numerical tool allowing

to estimate complex integrals, any quantity that can be expressed in term of an
integral over p1, . . . , pk, πk+1, . . . , πN can, in principle, be estimated by the right
sampling strategy.

Remark 1 : γSi and γE define two separate “dependence” structures respectively
related to aleatory and epistemic uncertainties. Considering dependencies between
random and fuzzy variables still remains an open question and is not considered in
this paper.

4.1.3 Parameter γA

Numerical approximation always means approximation error. One of the interest
of the Monte-Carlo sampling is that convergence theorems allow one to quantify
this error. Parameter γA is related to this numerical error and has a direct effect
on the number Mp of samples to be propagated. It can be used in two ways: either
the DM specifies a goal in term of numerical accuracy and the number of samples
required to reach this accuracy is then determined, or the DM specifies a maximal
number of samples that can be made (in accordance with available ressources), and
the reachable numerical accuracy is evaluated.
Sometimes, it is possible to determine before propagating the required number of

samples to reach a given accuracy, or the reachable accuracy with a given number
of samples. In this case, the DM can fix his final choice before anything is done.
When numerical accuracy can only be determined after the propagation, a simple
strategy consists in making a first propagation with a low number of samples, and
then to increase this number until the numerical accuracy satisfies the DM or until
the maximal number of affordable propagations is reached. In this paper, we focus
on a method evaluating numerical accuracy by the use of order statistics (Lecoutre
and Tassi 1987, Conover 1999)1, and which pertains to the cases where numerical
accuracy can be determined beforehand.
Let us note Xq the q percentile of a random variable X. From a sample of size

N , the use of order statistics consists in considering the ordered values x(1) ≤ . . . ≤
x(N) drawn from the random variable X. If the N values are drawn randomly and

1Often quoted as the use of Wilk’s formula (Wilks 1962)
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independently, the following equation

P (X(K) < Xq) =
N∑
i=K

(
i
N

)
qi(1− q)N−i (3)

holds. This is equivalent to saying that the random variable FX(X(K)) follows a
beta law of parametersK andN−K+1. The interest of this result is that FX(X(K))
does not depend of X distribution. This allows the derivation of confidence intervals
bounding a percentile with a numerical accuracy without knowing neither the values
X(i) nor X distribution. For instance, if a DM wants a conservative upper bound of
the 95% percentile that covers it with a confidence of at least 95%, then, by using
equation (3), we see that at least 59 computations will be required, since with 58
samples, P (X(58) < X95) = (0.95)58 = 5.1% (i.e. a confidence of 94.9 %), while
with 59 samples, P (X(59) < X95) = (0.95)59 = 4.8%.
In the above case, numerical accuracy has to be expressed as a confidence to cover

the true value with the estimation evaluated from the samples. In other situations,
the above results cannot be used and numerical accuracy cannot be evaluated be-
forehand: for example, the DM expresses the desired numerical accuracy as the
minimal width of a confidence interval bounding a statistical quantity. This statis-
tical quantity can be a percentile, but also, for example, the mean value (in this
case, MC methods converge towards the true value at rate σ/

√
N , where σ is the

standard deviation).
Since in the RaFu methods, each propagated sample results in an interval with

lower and upper bounds, numerical accuracy and confidence intervals have to be
given for both of them. After having integrated numerical accuracy in the process
by the means of γA, we thus end up with two confidence intervals bounding a lower
and an upper estimation of the statistical quantity defined by γSo .
Figure 7 illustrates the whole procedure by a flowchart. It shows where the DM

can act upon the values of parameters and fix them in function of the final desired
result. Propagation is then done accordingly, with the minimal number of samples
meeting DM requirements. As said before, we focus here on the case where numerical
accuracy or number of samples can be determined beforehand (i.e. Yes path in the
first diamond).

In order to illustrate our methodology, we provide in Table 1 the minimal sam-
ple size given by the RaFu method for various choices of (γS , γE , γA). As stated
previously, we focus on percentiles, since percentile is the most relevant statistical
quantity in many safety studies. The minimal sample size is derived thanks to the
use of order statistics. For example, if the DM wants to have an upper limit of the
response 95% percentile assuming stochastic independence between the k random
variables, to be hyper-cautious about epistemic uncertainty (i.e. concentrate on α-
cuts [x0, x0]) and to have a numerical certainty of 99% to cover the true value, he or
she chooses the triplet (γS , γE , γA) = (0.95/Stochastic independence, 0, 0.99). The
RaFu method derives the minimal sampling size to satisfy the DM’s choice, here
90, and the nature of this sampling. Eventually, if 90 calculations are too costly, the
DM can choose to lower the numerical accuracy to 95 %, thus reducing the number
of required computations to 59. These two examples are in bold in Table 1.
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Figure 7. RaFu method : flowchart (# samples: number of samples).

4.2 Relations with previous post-treatments

It is interesting to note that the results of post-processing methods in (Ferson and
Ginzburg 1996, Baudrit et al. 2006) recalled in Section 3, since they are equivalent
to evaluate particular integrals over p1, . . . , pk, πk+1, . . . , πN , can be reached by
specific instances of parameter γE . We begin by the post-treatment proposed by
Baudrit et al..

Proposition 4.1: The result of the post-treatment giving [F av, F av] can be inter-
preted as the following choices over γS , γE:
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γS γE # samples
γA = 90% γA = 95% γA = 99%

90% α 22 29 44
Stochastic (α1, ..., αMπ) 22 ×Mπ 29 ×Mπ 44 ×Mπ

independence Randomized α for each sample 22 29 44
Randomized α for each α-cut 22 29 44

95% α 45 59 90
Stochastic (α1, ..., αMπ) 45 ×Mπ 59 ×Mπ 90 ×Mπ

independence Randomized α for each sample 45 59 90
Randomized α for each α-cut 45 59 90

99% α 230 299 459
Stochastic (α1, ..., αMπ) 230 ×Mπ 299 ×Mπ 459 ×Mπ

independence Randomized α for each sample 230 299 459
Randomized α for each α-cut 230 299 459

Table 1. Minimal sample size derived by the RaFu method for various choices of (γS , γE , γA). The statistical
quantity γS is a percentile.

• γS0 = F (x) , ∀x (whole cumulative distribution) and γSi = Stochastic inde-
pendence between X1, ..., Xk.
• γE = randomized α for each sample.

Proof : Let us consider the model T and the lower probability on Y , P ([−∞, y]) =
F Y (y), associated to Baudrit et al.’s post-treatment. This lower probability corre-
sponds to the lower expectation (also called lower prevision in (Walley 1991)) of
the indicator function of the event [−∞, y]. This lower expectation is given by the
following formula:

P ([−∞,y])=
1R

κ=0

1R
α1=0

...
1R

αk=0
I(T (F−1

X1
(α1),...,F

−1
Xk

(αk),[xκ,xκ]k+1,...,[xκ,xκ]N )⊂[−∞,y])dκdα1...dαk

(4)
where distributions P1, . . . , Pk are independent (cf. γSi) and I(A) is the indica-
tor function of the event A. Note that the integration of eventual dependencies
mentioned in Section 4.1.1 can be easily done and do not modify the present result.
Performing a Monte-Carlo sampling with parameters (γS = F (x) , ∀x) and (γE =

randomized α) for each sample, propagating and then computing the associated
lower probability P ([−∞, y]) is obviously equivalent to a numerical evaluation of
the integral given by equation (4). As both Baudrit et al.’s approach and the RaFu
method are discretized numerical evaluation of the same integral, they converge to
the same value.
Since this holds for all values y ∈ Y , the two resulting p-boxes will converge to

the same p-box, thus showing that the two methods converge towards the same
final result.
For the upper probability on Y , P ([−∞, y]) = F Y (y), associated to Baudrit et

al.’s post-treatment, the reasoning is similar, except that equation (4) becomes

P ([−∞,y])=
1R

κ=0

1R
α1=0

...
1R

αk=0
I(T (F−1

X1
(α1),...,F

−1
Xk

(αk),[xκ,xκ]k+1,...,[xκ,xκ]N )∩[−∞,y]6=∅)dκdα1...dαk

(5)
This ends the proof. �

We now consider the post-treatment proposed by Ferson. We will consider that
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a single value α has been chosen (extension to any number of different values for α
is straightforward)

Proposition 4.2: The result of the post-treatment giving [F κ, F κ] can be inter-
preted as the following choices over γS , γE:

• γS = F (x) ,∀x (whole cumulative distribution) and γSi = Stochastic indepen-
dence between X1, ..., Xk.
• γE = κ.

Proof :
We can use a reasoning similar to the one used in the previous proof, except that

now the integral becomes

P ([−∞,y])=
1R

α1=0
...

1R
αk=0

I(T (F−1
X1

(α1),...,F
−1
Xk

(αk),[xκ,xκ]k+1,...,[xκ,xκ]N )⊂[−∞,y])dα1...dαk (6)

and, in particular,

P ([−∞,y])=
1R

α1=0
...

1R
αk=0

I(T (F−1
X1

(α1),...,F
−1
Xk

(αk),[x0,x0]k+1,...,[x0,x0]N )⊂[−∞,y])dα1...dαk (7)

for [F 0, F 0], and

P ([−∞,y])=
1R

α1=0
...

1R
αk=0

I(T (F−1
X1

(α1),...,F
−1
Xk

(αk),[x1,x1]k+1,...,[x1,x1]N )⊂[−∞,y])dα1...dαk (8)

for [F 1, F 1]. �

Even if the RaFu method treats aleatory and epistemic uncertainty with the same
theoretical framework as Baudrit et al.’s and Ferson’s approaches, the required
number of samples (i.e. of computations) leading to the same results can be very
different. Table 2 compares the numerical requirements of the various approaches
for the particular example given at the end of Section 3, in order to compute the
resulting p-boxes of each post-processing. This table illustrates the main advan-
tage of the proposed method versus usual post-processings: since it concentrates
exclusively on the desired final answer, it only propagates the core information
needed to reach this answer. It allows, in this situation, to divide the number of
required propagation by 20 (resp. 10) compared to Baudrit et al. (resp. Ferson) or
by a number proportional to Mπ in a more general case. From a computational
efficiency standpoint, this is an important improvement keeping in mind that in-
dustrial applications involve complex computer codes.

Post-processing Usual propagation RaFu Method
(with fixed γS , γA) (build the whole RFV)

Baudrit et al # samples: 2100 γE (Strat 3) # samples: 100
Mp = 100,Mπ = 21 Mp = 100

Ferson # samples: 2100 γE (Strat. 2) # samples: 200
Mp = 100,Mπ = 21 = {α = (0, 1)} Mp = 100,Mπ = 2

Table 2. Comparison between classical post-processings and the RaFu method.
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Symbol Name
Q River flow rate
B River width
Ks Strickler coefficient
Zu Upriver water level
Zd Downriver water level
L River length

Table 3. Summary of parameters used in equation (9)

5. Illustration

In this section, we apply the RaFu method on a simplified model used by EDF
(French integrated energy operator) to compute the overflowing height for a river
dike (Magne and Vasseur 2006). Although this model is quite simple, it provides
a realistic industrial application in which we can distinguish between aleatory and
epistemic uncertainty. This model approximates the overflowing height H of a river
and depends on six parameters which are summarized in Table 3. It reads

H =

 Q

Ks

√
Zu−Zd
L B

 3
5

(9)

5.1 Modeling uncertainty sources

We assume the river width (B) is constant on all the length of the river (L). Both
these width and length are assumed to be well known (i.e. no uncertainty on these
parameters). They are set to L = 5000m and B = 300m in the following numerical
tests.
The value of the river flow rate (Q) depends on a huge number of physical phe-

nomena (e.g. climatic and meteorologic conditions, period of the year, . . . ) that
are highly variable over time and/or space. The flow rate value can therefore be
interpreted as an aleatory value due to the natural variability of various physical
phenomena. As a lot of measurements are usually available for river flow rates, it
is possible to fit the data to a probability law modeling this variability. Experience
has shown that this variability can be well represented by classical lognormal or
Gumbel laws.
Water levels Zu and Zd depend on sedimentary conditions that are peculiar to

the considered river bed. Due to various reasons, these sedimentary conditions are
usually not well known, but are not the consequence of some physical variability or
of some random event (since we consider a specific river). The uncertainty of the
water levels being due to a lack of information, it is therefore of epistemic nature,
and should be modeled by a fuzzy variable.
Similarly, the Strickler coefficient Ks is a model parameter used instead of a

physical model to describe the dependance between the flow velocity and the slope
of the river. It is also specific to the considered river bed, and the complexity
of the river nature makes it difficult to estimate with precision. In our context,
the uncertainty linked to such a non-measurable parameter should be modeled
by a fuzzy variable as well. Table 4 gives the chosen models for our application
(considered values and uncertainties are typical values). As an example, Figure 8
illustrates the possibility distribution modeling the epistemic uncertainty on Ks.
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0
KS
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15 30 45

Figure 8. Triangular fuzzy number modeling Ks

Variable Unit Model
Q m3s−1 Lognormal law (m = 7.04 and σ = 0.6)
Zu m Triangular possibility distribution (54,55,56)
Zd m Triangular possibility distribution (49,50,51)
Ks m1/3s−1 Triangular possibility distribution (15,30,45)

Table 4. Uncertainty models without the RaFu approach

For sake of completeness, we also consider in the following applications the results
derived from a probabilistic approach. In this case,uncertainties are modeled by the
means of probability distributions. According to the available knowledge on uncer-
tain parameters, we therefore associate to Zu, Zd and KS triangular probability
distributions with the same support and mode as the triangular fuzzy numbers of
Table 4. Even if Figure 8 can be interpreted, up to normalization, as the triangular
probability distribution modeling the aleatory uncertainty attached to KS , there is
however a fundamental difference related to the information represented by these
two types of distributions. As mentionned in Section 2.1.2, a possibility distribution
can be seen as a partial probabilistic model. The triangular possibility distribution
(15, 30, 45) is then more similar to a set of probability distributions characterized
by “the most likely value is 30” and “the support is [15;45]” (i.e. ZS cannot take any
values outside [15; 45]) whereas the triangular probability distribution (15, 30, 45)
is just a specific probability distribution in this set. We refer to (Dubois and Prade
1992, de Cooman and Aeyels 1999) for more details.

5.2 Numerical tests

To illustrate the RaFu approach, we give various results where the RaFu method is
applied with a fixed number of samples (M = 1000). We first illustrate the construc-
tion of whole cumulative distributions corresponding to the two post-processings of
Baudrit et al. and Ferson. We then shows the effect of using numerical approxima-
tion on the the 95% percentile.
In these applications, γS is the whole cumulative distribution (resp. the 95%

percentile) with stochastic independence whereas γE corresponds to Ferson’s post-
treatment (i.e.α = {0, 1} or Strategy 2) and to Baudrit et al.’s post-treatment
(α = {av} or Strategy 3).

5.2.1 Cumulative distributions

Figure 9 displays the CDF(s) associated to the RaFu method and to the proba-
bilistic approach. For sake of clarity, numerical accuracy (i.e. γA) is not considered
in this figure.

Note that, because fuzzy variables (epistemic uncertainty) are modeled by means
of triangular fuzzy numbers, taking γE = {α = 1} comes down to suppress this epis-
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Figure 9. Result of Rafu Method and probabilistic approach with 1000 samples

temic uncertainty, thus the result is a unique cumulative distribution (we consider
that both Zu, Zd,Ks are precisely known).
It is important to notice that the pair(s) of CDFs corresponding to Ferson’s and

Baudrit et al.’s post-treatments have been derived by the RaFu method using 1000
samples. Had we built the whole random fuzzy variable which is required in the
two previous post-treatments, Mπ × 1000 interval computations would have been
necessary, with Mπ the chosen number of discretized α-cuts.
Note that the CDF of the probabilistic approach Fprob. is encompassed by the

P-boxes [F 0, F 0] and [F av, F av]. It is also quite similar to the cumulative distribu-
tion F 1. Therefore, uncertainty on Zu, Zd and KS have almost no effects on the
result with a fully probabilistic approach, while it is not the case with an hybrid ap-
proach explicitly differentiating epistemic and aleatory uncertainty. This well shows
that choosing an uncertainty model does have an important effect, even for simple
examples.

5.2.2 Numerical accuracy of 95% percentile

Figure 10 illustrates numerical accuracy on the estimation of the 95% percentile.
For each case considered in Figure 9, it displays the best estimates of the 95% per-
centiles, as well as lower and upper bounds bounding these percentiles with a 95%
confidence (i.e. γA = 95%). Since for γE = {α = 0} and the probabilistic approach,
intervals reduce to single values, we have six series of 1000 values (corresponding
to lower/upper bounds of γE = {α = 1, 0, av} and to the probabilistic approach).
From these samples, the 95% percentile and its numerical accuracy are then esti-
mated using order statistics and Equation (3). More precisely, the lower and upper
bounds of the 95 % numerical confidence interval respectively correspond to the
936th and 964th sorted values. Best estimates are given by the 950th sorted value.

It comes out that the introduction of imprecision in the uncertainty analysis and
the DM’s behavior with respect to epistemic uncertainty can strongly affect the es-
timation of the 95% percentile. For example, for a hyper-cautious DM, a difference
of 4.5m is noticeable whereas an optimistic strategy provides roughly the same es-
timation as in the probabilistic case. Moreover, the numerical approximation effect
is not negligible, even for a relatively high number of computations (here, 1000).
This last result is all the more important as, in pratical safety studies dealing with
complex computer codes, the number of affordable computations does not exceed
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Figure 10. Evaluation of the 95% percentile

200 (OCDE 2006, Baccou and Chojnacki 2007). Therefore, the numerical uncer-
tainty margin can be even larger than in our example. Imprecision and numerical
error approximation can have potential consequence on the decision-making process
(compare the 4.4m of the probabilistic approach to the 8.2m of the RaFu method
in the case of a hyper-cautious DM with maximal numerical error).

6. Conclusions and perspectives

Mixing fuzzy and probabilistic modeling allows one to differentiate epistemic and
aleatory uncertainties, and to take account of both of them. After propagation of
probabilities and fuzzy sets by their respective calculus, one obtains a random fuzzy
random, to which is usually applied a post-processing allowing to get a summarized
information. Two shortcomings of this procedures are the followings: first, it has
an important computational cost which prevents the use of such methods to com-
plex models; second, while using a numerical approximation in the propagation,
it does not consider the issue of evaluating the numerical error arising from such
approximations.
We have introduced a new numerical method (the RaFu method) that addresses

these two issues in the following ways:

• it reduces the computational burden of the propagation by concentrating
on the final desired result, only propagating the minimal information to obtain
it. In other words, it avoids building the whole random fuzzy variable when
unnecessary.
• It evaluates the numerical error resulting from the approximation due to sam-
pling strategies, by using features of M-C simulations techniques and order statis-
tics.

In this method, the decision maker (DM) specifies before the uncertainty propaga-
tion which information he’s interested in, and what is the numerical accuracy he
wants to reach. An optimized sampling strategy is then determined, which mini-
mizes the number of required computations.
Since epistemic and aleatory uncertainties are often mixed (i.e. imprecisely ob-

served random variables), the next step would be to integrate imprecise probabilities
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into the picture: for example by considering and sampling from imprecisely defined
cumulative distributions (so-called p-boxes (Ferson et al. 2003)) instead of precise
ones. In this perspective, IRSN is currently studying how usual numerical methods
designed to handle dependencies (Iman and Conover 1982) can be extended to such
models (Destercke and Chojnacki 2008). Also, it would be interesting to study how
recent sampling techniques such as MCMC methods could be applied to the present
framework, in order to improve numerical accuracy and computational efficiency
even more.
Another issue is to consider epistemic uncertainty concerning second order mod-

els: in applications, it often happens that one knows the type of parametric law
modeling a population (e.g. gaussian, exponential law, law corresponding to ex-
treme values) but only knows the parameters defining this law with imprecision.
It would be interesting to model this epistemic uncertainty by means of possibility
distributions, and to study the effect of various assumptions on the propagation
of such an uncertainty. For example, in the application concerning the overflowing
height of a river, it can happen that the parameters of the lognormal law mod-
eling the river flow rates are only imprecisely known (due to systematic errors in
measurements or to the limited number of measurements made on a specific river).
Finally, we would like to point out that the current study settles in a much

more general problematic, which is the search of efficient simulation techniques and
efficient computational methods allowing to deal with imprecise probabilities.

References

Alvarez, D.A., 2006. On the calculation of the bounds of probability of events using
infinite random sets. Int. J. of Approximate Reasoning, 43, 241–267.

Baccou, J. and Chojnacki, E., 2007. Contribution of the mathematical modelling
of knowledge to the evaluation of uncertainty margins of a LBLOCA transient
(LOFT-L2-5). Nuclear Engineering and Design, 237, 2064–2074.

Bardossy, G. and Fodor, J., 2004. Evaluation of uncertainties and risks in geology:
new mathematical approaches for their handling. Berlin: Springer.

Baudrit, C., Dubois, D. and Perrot, N., 2008. Representing parametric probabilistic
models tainted with imprecision. Fuzzy Sets and Systems, 159, 1913–1928.

Baudrit, C., Guyonnet, D. and Dubois, D., 2006. Joint Propagation and Exploita-
tion of Probabilistic and Possibilistic Information in Risk Assessment. IEEE
Trans. Fuzzy Systems, 14, 593–608.

Birnbaum, A., 1961. Confidence curves: an omnibus technique for estimation and
testing statistical hypothesis. Journal of American Statistical Association, 56,
246–249.

Conover, W., 1999. Practical non-parametric statistic. 3rd New York: Wiley.
Cooper, J., Ferson, S. and Ginzburg, L., 1996. Hybrid processing of stochastic and

subjective uncertainty. Risk Analysis, 16, 785–791.
Couso, I., Moral, S. and Walley, P., 2000. A survey of concepts of independence for

imprecise probabilities. Risk Decision and Policy, 5, 165–181.
Cox, D., 1958. Some problems connected with statistical inference. Annals of Math-

ematical Statistics, 29, 357–372.
de Cooman, G. and Aeyels, D., 1999. Supremum-preserving upper probabilities.

Information Sciences, 118, 173–212.
Destercke, S. and Chojnacki, E., 2008. Extending usual methods handling depen-

dencies to imprecise probabilistic models. .
Dubois, D., Nguyen, H. and Prade, H., 2000. Possibility theory, probability and



November 17, 2009 9:41 International Journal of General Systems gGEN_ChojnackiAll

REFERENCES 21

fuzzy sets: misunderstandings, bridges and gaps. In: Fundamentals of Fuzzy
Sets., 343–438 D. Dubois and H. Prade.

Dubois, D. and Prade, H., 1988. Possibility Theory: An Approach to Computerized
Processing of Uncertainty. New York: Plenum Press.

Dubois, D. and Prade, H., 1992. When upper probabilities are possibility measures.
Fuzzy Sets and Systems, 49, 65–74.

Feller, W., 1971. An Introduction to Probability Theory and Its Applications. Vol. I
& II. New York: John Wiley and Sons.

Ferson, S., Ginzburg, L., Kreinovich, V., Myers, D. and Sentz, K., Constructing
probability boxes and Dempster-Shafer structures. , 2003. , Technical report,
Sandia National Laboratories.

Ferson, S. and Ginzburg, L.R., 1996. Different methods are needed to propagate
ignorance and variability. Reliability Engineering and System Safety, 54, 133–
144.

Helton, J. and Oberkampf, W., eds. , 2004. Alternative Representations of Uncer-
tainty, Special issue of Reliability Engineering and Systems Safety. Vol. 85.
Elsevier.

Iman, R. and Conover, W., 1982. A distribution-free approach to inducing rank
correlation among input variables. Communications in Statistics, 11 (3), 311–
334.

Jaulin, L., Kieffer, M., Didrit, O. and Walter, E., 2001. Applied Interval Analysis.
London.

Kaufmann, A. and Gupta, M., 1985. Introduction to Fuzzy Arithmetic: Theory and
Applications. .

Lecoutre, J. and Tassi, P., 1987. Statistique non-parametrique et robustesse. Eco-
nomica.

Magne, L. and Vasseur, D., eds., 2006. Maitriser les incertitudes pour mieux gerer
les risques. In: Risques industriels. Complexite, incertitude et decision : une
approche interdisciplinaire., 219–260 Lavoisier.

Moore, R., 1979. Methods and applications of Interval Analysis. SIAM Studies in
Applied Mathematics Philadelphia: SIAM.

Nelsen, R., 2005. Copulas and quasi-copulas: An introduction to their properties
and applications. In: E. Klement and R. Mesiar, eds. Logical, Algebraic, Ana-
lytic, and Probabilistics Aspects of Triangular Norms. Elsevier, chap. 14.

Oberguggenberger, M., King, J. and Schmelzer, B., 2007. Imprecise probability
methods for sensitivity analysis in engineering. 317–326.

OCDE, Bemuse Phase 1,2,3 Report. , 2006. , Technical report NEA/CSNI/R(2006),
Nuclear Energy Agency (NEA).

Regan, H., Ferson, S. and Berleant, D., 2004. Equivalence of methods for uncertainty
propagation of real-valued random variables. Int. J. of Approximate Reasoning,
36, 1–30.

Walley, P., 1991. Statistical reasoning with imprecise Probabilities. New York: Chap-
man and Hall.

Wilks, S., 1962. Mathematical statistics. New York.


