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Abstract. When using data-driven models to make simulations and predictions
in experimental sciences, it is essential for the domain expert to be confident
about the predicted values. Increasing this confidence can be done by using inter-
pretable models, so that the expert can follow the model reasoning pattern, and by
integrating expert knowledge to the model itself. New pieces of useful formalised
knowledge can then be integrated to an existing corpus while data-driven models
are tuned according to the expert advice. In this paper, we propose a generic inter-
active procedure, relying on an ontology to model qualitative knowledge and on
decision trees as a data-driven learning method. A case study based on data issued
from multiple scientific papers in the field of cereal transformation illustrates the
approach.

1 Introduction

In many domains where extensive mathematical knowledge is not available, sharing
expertise and conclusions obtained from data are of great importance for building effi-
cient decision support tools. This is very much the case in Life Sciences [1], owing to
the great variability of living organisms and to the difficulty of finding universal deter-
ministic natural laws in biology. Many areas of life science (food processing, cultural
practices, transformation processes) rely as much upon expertise and data than upon
mathematical models.

For domain experts to use data-driven models (especially in sciences where exper-
iments play a central role), it is necessary for them to be confident in the results. Even
if such a confidence can be partially obtained by a numerical validation procedure, an
expert (denote by he in the sequel) will always be more confident if he can understand
the reasoning followed to make the prediction and if this reasoning coincides with his
knowledge of the (natural or industrial) processes and of their interactions. This can be
done by using interpretable learning models, such as decision trees, fuzzy rule bases,
bayesian networks, . . .

Unfortunately, experimental data are seldom collected with a global approach, i.e.
with the thought that they are only a part of a more complex system, and are not usually



ideally structured to achieve inductive learning. Learning models from rough experi-
mental data therefore seldom provides models completely meaningful and sensible to
the domain expert. Confronting the domain expert to interpretable data-driven models
whose descriptive variables do not necessarily exactly coincide with the ones he would
have selected has a double benefit. First it can be a means to acquire new items of
knowledge from the expert, then it is a good way to design a useful model.

In this paper, we propose an interactive (between AI methods and domain experts)
and iterative approach to achieve these two related goals which are usually hard to
achieve, i.e. enrich our qualitative knowledge of processes and increase the expert con-
fidence in the data-driven model.

Domain knowledge (coming from expert, literature, . . . ) is formalised by using an
ontology to specify a set of concepts and the relations linking them, which gives a
structure that facilitates the interaction with domain experts. Our approach is generic
regarding data-driven learning methods, and in the following, we illustrate it with deci-
sion trees. Decision tree algorithms are efficient approaches for data-driven discovery
of complex and non obvious relationships. Their readability and the absence of a priori
assumptions explain their popularity. They are particularly useful for variable selection
in highly multidimensional problems, therefore they are ideal to display statistically
important variables on which the domain expert should focus. Decision trees can be
pruned and, as thoroughly discussed in [2], not too complex. Such a low complexity is
essential for the model to be interpretable, as confirmed by the conclusions of Miller
([3]) relative to the magical number seven.

As far as we know, no interactive approach trying to combine qualitative knowledge
(modelled by an ontology) and data-driven learning methods in the field of experimen-
tal sciences has been proposed up to now. Indeed, most attempts at such collaborative
methods focus on problems where scalability is a main issue, and where method perfor-
mances can be automatically measured. A few semi-automatic interactive approaches
(combining learning and ontology-based knowledge) recently appeared in the litera-
ture, in fields where large amounts of data must be treated, such as the Semantic Web
([4],[5]), to deal with multiple ontologies ([6],[7]), or in cases where data are well-
structured, such as in image classification ([8]).

The case of inductive learning using ontologies, data and decision trees has been
addressed in [9], however it is limited to the specific case of taxonomies4, whereas
in this paper we do not make this restriction. Moreover we consider domain expert
knowledge and feedback, while the approach in [9] is more fitted to fully automatic
learning (once the ontology is given).

In many cases in Life Sciences, data can be scarce, costly, and not necessarily nu-
merous. Our purpose is to propose a framework to use these data as best as possible.
Therefore our primary aim is to not to improve the numerical accuracy of a learnt model
(although it is certainly desired), or the fastness with which it detects some features.

We are aware of the challenge to achieve a good balance between the time spent
by the domain expert on the learning task and the benefits he can retrieves in terms of
model generalization and fiability. Our purpose is to tend towards automated procedures

4 Ontologies that can be represented as rooted trees in graph theory.



as much as possible, where domain experts, ontology and learning models can interact
without the help of AI experts.

The paper is organized as follows: Section 2 provides the necessary background and
definitions of ontology and decision trees to understand the paper. Section 3 formally
describes the various data processing operations done using the ontology. Section 4
presents the outline of the interactive approach. A case study concerning the impact of
agri-food transformation processes on the nutritional quality of wheat-based products is
presented in section 5. All along the paper, we illustrate our generic approach by taking
examples in the field of expert knowledge, scientific papers and experiments related to
cereal product quality.

2 Background

In this section, we briefly recall necessary elements regarding ontology definition and
decision trees, which will be used as data-driven inductive learning methods to provide
domain expert readable model.

2.1 Ontology definition

The ontology Ω is defined as a tuple Ω = {C,R} where C is a set of concepts andR is
a set of relations.

Relationship between concepts and variables We consider a data set D containing
K variables and N experiments. Each variable Xk, k = 1, . . . ,K, is a concept c ∈ C
in the ontology Ω. The nth value of the kth variable is denoted xk,n.

Concept range A concept c may be associated with a definition domain by the Range
function. This definition domain can be: (i) numeric, i.e. Range(c) is a closed interval
[minc,maxc]; (ii) ’flat’ (non hierarchized) symbolic, i.e. Range(c) is an unordered set
of constants, such as a set of scientific papers; (iii) hierarchized symbolic, i.e.Range(c)
is a set of partially ordered constants, that are themselves concepts belonging to C.

Set of relations The set of relationsR is composed of:

1. the subsumption or ’kind of’ relation denoted by �, which defines a partial order
over C. Given c ∈ C, we denote by Cc the set of sub-concepts of c, such that:
Cc = {c′ ∈ C|c′ � c}. When c represents a variable with hierarchized symbolic
definition domain, we have Range(c) = Cc. For sake of conciseness, we use Cc in
the sequel whenever possible.

2. a set of functional dependencies. A functional dependency FD expresses a con-
straint between two sets of variables and is represented as a relation between two
sets of concepts of C. Let X = {Xk1 , . . . , Xk2} ⊆ C, 1 ≤ k1 ≤ k2 ≤ K
and Y = {Yk3

, . . . , Yk4
} ⊆ C, 1 ≤ k3 ≤ k4 ≤ K be two disjoint subsets of

concepts. X is said to functionally determine Y if and only if there is a func-
tion DetV alFD such that: DetV alFD : Range(Xk1

) × . . . × Range(Xk2
) →

Range(Yk3)× . . .×Range(Yk4). Two instances of such functional dependencies
are required in our approach:



– a property relation P : C → 2|C| that maps a single concept to a set of other
concepts that represent associated properties.

Example 1. P(Vitamin) = {Thermosensitivity,Solubility, . . .}.

For each concept that has some properties, i.e., ∀c ∈ C, P(c) 6= ∅, we denote by pc the
number of properties and by P(c)i the ith element of P(c), with i = 1, . . . , pc. The
function DetV alP will be denoted by HPc (for HasProperty). It maps a particular
value ofRange(c) to the particular property values it takes in the ranges of the concepts
of P(c). HPc : Range(c) → Range(P(c)1) × . . . × Range(P(c)pc

). We denote by
HPc↓i : Range(c)→ Range(P(c)i) the restriction of HPc to its ith property, that is
HPc↓i = HPc ∩ (Range(c)×Range(P(c)i).
Example 2. We have P(Vitamin)1 = Thermosensitivity.
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Fig. 1. Some variables and related ontology parts where A → B means that A is a kind of B

– a determines relation D : 2|C| → C which specifies a subset of concepts whose
values entirely determine the value taken by another concept.

Example 3. D({Pastatype,Cookingtime}) = Cookingtype models the fact that the Cook-
ing type is a function depending on the values of Pasta type and of Cooking time.

The functionDetV alD will be denoted byHDC (forHasDetermination). ∀C ∈ 2|C|

such thatD(C) 6= ∅, we define the functionHDC such thatHDC : Range(c1)× . . .×
Range(c|C|)→ Range(D(C)), with ci and |C| being respectively the ith element and
the number of elements of C. The functionHD simply gives the values ofD(C), given
the values of the determinant variables.



Example 4. HD({Short, 18min}) = Overcooking.

Figure 1 is an example of three categorical variables: pH, Water and Thermosensi-
tivity, together with the sub-ontologies induced by the order �. pH is an example of
a continuous variable discretized into a categorical variable. Note that CWater is not a
simple taxonomy. We will repeatedly refer to this figure in our forthcoming examples.

2.2 Decision trees

Decision trees are well established learning methods in supervised data mining. They
can handle both classification and regression tasks. In multidimensional modeling, they
perform well in attribute selection and are often used prior to further statistical model-
ing. Also note that decision trees algorithms include methods to deal with missing data,
meaning that every experiment (or data), even the one with lacking values for some
variables, is used in the process. In this paper, due to lack of space, we focus on the
C4.5 [10] family of decision trees, and we use them for classification. In the present
study, another main interest of decision trees are their interpretability by domain ex-
perts, due to their graphical nature.

Algorithm description Input to classification decision trees consists of a collection of
training cases, each having a tuple of values for a set of input variables, and a discrete
output variable Y divided into MY classes: (xn,yn) = (x1,n, x2,n . . . xK,n, yn). An
attribute Xk can be continuous or categorical. The goal is to learn from the training
cases a recursive structure (taking the shape of a rooted tree) consisting of (i) leaf nodes
labeled with a class value, and (ii) test nodes (each one associated to a given variable)
that can have two or more outcomes, each of these linked to a subtree.

Well-known drawbacks of decision trees are the sensitivity to outliers and the risk
of overfitting. To avoid overfitting, cross-validation is included in the procedure and to
gain in robustness, a pruning step usually follows the tree growing step (see [11, 10]).

Splitting criteria We denote by pm(S) the proportion of examples at node S that
belong to class m. To select the splitting variable, the C4.5 algorithm uses information
theory entropy IEntropy as a selection and splitting criterion, whose value at node S is
IEntropy(S) = −

∑MY

m=1 pm(S)log2 pm(S).
If we denote by Mk the number of modalities of Xk, the improvement gained by

splitting the node S into Mk subsets S1, S2 . . . SMk
according to Xk, is evaluated as

G(S,Xk) = I(S)−
∑Mk

i=1
|Si|
|S| I(Si), with Mk the number of possible outcomes.

3 Data processing using ontologies

When automatically treating data to perform knowledge discovery or classification,
some input variables and/or their modalities may be irrelevant to the problem at hand.
Indeed, experimental data reported in papers, reports, etc., are usually collected for spe-
cific research objectives and may not entirely fit in a global knowledge engineering



approach. In some cases, a particular variable may be decomposed into some properties
more significant for the expert. For instance, to appreciate the degradation of vitamin
component during the Cooking in water operation, it is more interesting to consider the
thermosensitivities and reactivities to carbonate of the vitamins rather than the vitamin
types themselves. Also, the variable modalities may be too numerous, creating noise.
For example, a pH value may be divided into slightly, moderately, very acid and basic,
whereas separating between acid and basic pH is sufficient.

This section details various data transformations exploiting both the ontology de-
fined in Sect. 2.1 and domain expert feedbacks to build more significant variables from
the original ones. These transformations are performed automatically, according to the
used ontological knowledge (note that this ontological knowledge may not be avail-
able from the start). Transformed data can then be re-used in the laerning process, thus
providing a new model. Feedbacks may be stimulated by a third-party data treatment
method, i.e., decision trees in the present paper. Appropriate transformations are se-
lected by an expert evaluation of learning results.

3.1 Replacement of a variable by new ones

This process consists of substituting a variable by some of its (more relevant) properties,
which then become new variables. LetXk be a variable such that ∀n ∈ [1;N ],P(Xk) 6=
∅. For each property P(Xk)i , i ∈ [1; pXk

] (or a subset of them), we create a new vari-
able XK+i such that: ∀n ∈ [1;N ] xK+i,n = HPXk

(xk,n)↓i, with HPXk
(xk,n)↓i

the projection of HPXk
(xk,n) on Range(P(Xk)i) and P(Xk)i the ith element of

P(Xk). Indeed, a given variable may summarise many aspects of a process, and it is
sometimes desirable to decompose this variables into properties to better understand
the process and the properties that most influence it (for example, the ”year effect”
often considered in crop management summarise information related to temperatures,
climatic conditions, presence of diseases, . . . ).

Example 5. Let Xk = vitamin be the (non relevant) variable to be replaced and
P(vitamin) = {solubility, thermosensitivity} its properties. We have XK+1 =
solubility and XK+2 = thermosensitivity. The new variables are solubility and
thermosensitivity. Now, if for the nth experiment, xk,n = V itaminA, the two new val-
ues for the nth experiment are xK+1,n = HPXk

(xk,n)1 = Liposoluble and xK+2,n =
HPXk

(xk,n)2 = Thermolability. The initial variable Xk = V itamin is removed.

3.2 Grouping the modalities of a variable using common properties

In some cases, it may be useful to consider subsets of modalities corresponding to a
particular feature rather than the modalities themselves. Formally, this is equivalent to
considering elements of the power set of modalities, these elements being chosen w.r.t.
some properties of the variable. Let Xk be a given variable such that P(Xk) 6= ∅ and
let i ∈ [1; pXk

]. We replace Xk by X ′k such that, for n ∈ [1;N ]:
zn = HPXk

(xk,n)↓i, zn ∈ Range(P(Xk)i) and x′k,n = HPXk

−1
↓i (zn).

The first equation expresses that we first get zn, the ith property value associated
with xk,n. The second equation expresses that we then search for all the antecedents of



this value, i.e. all the xk,l (l ∈ [1;N ]) whose ith property value is equal to zn, which
includes xk,n but may also include other values.

Example 6. Let Xk = Water and pH ∈ P(Water). Suppose that we want to keep
track of the types of water used in the experiments, but that it would be desirable to
group them by pH . We haveHPWater(Tap water)↓pH = Basic pH , and
HPWater(c)↓pH = Neutral pH for any other c ∈ CWater. The new variable X ′k thus
has the following two modalities: {Tap Water} and {Deionized water, Distilled water,
Distilled deionized water}. Since the second modality is multi-valued, it can then be
replaced by a new concept Ion-poor water in C, added as a sub-concept of Water and a
super-concept of Distilled water and Deionized water (see Fig. 1).

3.3 Merging of variables in order to create a new one

It may be relevant to merge several variables into another variable, with the values of
the latter defined by the values of the former. It both facilitates the interpretation (as
less variables are considered) and avoids to consider as significant a single variable
that is only significant (at least from an expert standpoint) in conjunction with other
variables. Let C = {Xk1

, . . . , Xk|C|} ∈ 2X such that D(C) 6= ∅. Then we define
a new variable: XK+1 = D({Xk1

, . . . , Xk|C|}) such that for n ∈ [1;N ]: xK+1,n =
HDC({xk1,n, . . . , xk|C|,n}).

Example 7. When cooking pasta, domain expert differentiate between Under-cooked,
Over-cooked, and Optimally cooked products. However, these states depend on the type
of pasta and on the cooking-time, which are usually the specified variables in experi-
ments. Therefore, it makes sense to replace Cooking time and Pasta type by a new vari-
able Cooking type. For example,HDC({18min, Short}) = Over-cooked, replacing in
every experiment where Cooking time=18 and Pasta type=Short with Over-cooked.

4 Interactive approach: principles and evaluation

In this section, we first present the principles of our interactive approach. Then we detail
the way we evaluated the approach and its results.

4.1 Principles

We assume that we start from an initial domain ontology Ω0 = {C0,R0}, that can be
obtained from semi-automated methods [12], domain expert elicitation or that is readily
available. We also assume that an initial learning data set D0 is available, whose vari-
ables coincide with the ontology concepts (they may have to be added before starting).

How learning methods and ontology-based knowledge are combined through an
interactive and iterative process is summarized in Figure 2. At a step i, It can be sum-
marised as follows:

1. Induce model Mi from data, using the data set Di (starting with D0);
2. Assess numerical accuracy of Mi and discuss its significance with domain expert;



3. If domain expert is satisfied, stop the process, if not, elicit from domain expert
the transformations to be done on variables, as well as the modalities,properties or
functional dependencies used in this transformation. Add newly identified concepts
and relations to the ontology Ωi, obtaining Ωi+1 (starting with Ω0) ;

4. UsingΩi+1 and domain expert opinion, transform data (using methods from Sect. 3)
to obtain Di+1 from Di ;

5. Set i = i+ 1 and go back to step 1;

Fig. 2. Collaborative method scheme

4.2 Evaluation

There are two ways in which the current method can be evaluated:

– subjective human evaluation, performed by experts assessing their confidence in
the obtained results, and what are the possible inconsistencies they have detected
in the model,

– objective automatic numerical evaluation, where the results and stability of the pre-
dictive models are measured by numerical indices.
• The most classical criterion for classification trees is the miclassification rate,
Ec = MC

N , where MC is the number of misclassified items and N is the data
set size, computed with a cross validation procedure or on the whole data set.

• Tree complexity: Nrules + Nnodes/Nrules, where Nrules is the number
of terminal nodes (leaves), which is equivalent to the number of rules, and
Nnodes is the total number of nodes in the tree.

5 Case study: application to food quality prediction

Cereal and pasta industry has developed from traditional companies relying on expe-
rience and having a low rate of innovation, to a dynamic industry geared to follow
consumer trends: healthy, safe, easy to prepare, pleasant to eat [13].



Previous systems have been proposed in food science, and more specifically in the
field of cereal transformation, in order to help prediction [14]. However none of them
takes into account both experimental data and expert knowledge, nor proposes solutions
in absence of a predetermined (mathematical or expert) model.

5.1 Context and description of the case study

For each unit operation of the transformation process, and for each family of product
properties, information is given as a data set. The input variables are the operation
parameters. The output variable is the operation impact on a property (e.g. the variation
of vitamin content). Here, we study the case of the Cooking in water unit operation and
the Vitamin content property. This case concerns 150 experimental data and involves 60
of the ontology concepts. Table 1(a) shows some values of the input variables and of the
output variable. The ontology was created using CoGUI (http://www.lirmm.fr/cogui/ ).
Data transformation and decision trees were obtained using the R software [15] (use of
R-WEKA package and about 2000 lines of developed code).

Id Vitamin Cooking Cooking Water Vitamin
temp. (C) time (min) loss (%)

1 B6 100 13 NA -52
2 B2 100 12 Tap -53
3 B1 98 15 Distilled -47
4 B2 90 10 NA -18
5 B1 100 NA Dist./Deio. -41

Iteration number MC rate (%) Complexity
1 44 7.3
2 48 8.4
3 35 7.5
4 35 7.5

Table 1. (a) Part of the training data set (b) Tree evaluation5.2 Application of the approach to the case study

The approach has been carried out with a strong collaboration between a team of four
computer science researchers and two food science researchers5, with a regular involve-
ment of all participants. The output variable is the Percentage of vitamin loss during the
process, which is a continuous variable, discretized into four ordered classes Low loss,
Average loss, High loss, Very high loss.

The implementation used for decision trees is the R software with the R-WEKA
package. The parameters of the algorithm are: minimum number of instances per leaf=
6. All trees are pruned. They are to be interpreted as follows:

1. Each test node is labeled by the splitting variable.
2. for each leaf node, the number of misclassified observations is specified.

Our approach will be conforming to the collaborative approach outlined in section 4.
It will be illustrated by four iterations.
Iteration 1: initial state Figure 3 shows the tree trained on the raw data sample (D0).
As mentioned in Section 2.2, the complexity for C4.5 decision trees increases with the
number of modalities, which is the case for the Kind of water variable. The purpose of
our approach is also to reduce that complexity by identifying the relevant underlying
properties hidden behind these modalities.

5 B. Cuq (Prof. in Food Science), J. Abécassis (Research Eng. in Cereal Technology), IATE
Joint Research Unit



Fig. 3. Decision trees on - (a) raw data - (b) data with vitamin properties

Expert examination of the tree led to the following remarks and adjustments. First,
the most discriminant variable is Ingredient Addition. Indeed, it corresponds to adding
vitamins for compensating a loss during the cooking process. The experts suggested to
enrich the ontology by characterizing the vitamins by their properties. The following
elements were added to the ontology (obtaining Ω1), and data were transformed to
obtain D1.

P(V itamin)={Solubility,Thermosensitivity,Photosensitivity,...}

Range(Photosensitivity)={Photolabile,Photostabile}

HPV itamin(V itaminA)={Liposoluble,Thermolabile,Photostabile}

Iteration 2: introducing knowledge on Vitamin properties The model M1 is a new
tree illustrated by Figure 3(b). The Kind of water and the Cooking time variables are
emphasized by this tree. And yet, discussion with experts brought out the fact that the
Cooking time variable is relevant only if considered with the Pasta type. Experts also
suggested that water can be better characterized in terms of pH and of Hardness. In the
available experiments the water pH and Hardness were not measured. However they
can be reconstructed from the water types. The following elements were added to Ω1

to obtain Ω2 and used to transform D1 in D2 (see section 2.1):

P(Water)={pH,Hardness}, Range(ph)={AcidpH,NeutralpH,BasicpH}

HPwater(Tapwater)={NeutralpH,Hard}

D({Pastatype,Cookingtime})=Cookingtype, HD({short,18min})=Overcooking

Iteration 3: introducing Cooking type and Water properties Figure 4(a) shows M2,
the tree obtained with the previous modifications. We can see on this tree that the Hard-
ness, the newly built variable, is now selected for the second split. The discussion with
experts highligted the existence of a link between Water hardness and pH evolution.
The water pH evolution depends both on the Cooking temperature and on the Water
hardness. A new variable will then be created according to a few expert rules not de-
tailed here, obtaining Ω3 and D3.

D({pH, Temperature}) = CookingpH



Fig. 4. Decision tree - (a) includingCooking Type and Water Properties - (b) at the final step

Iteration 4: introducing the Cooking pH Figure 4(b) displays the final C4.5 tree
(model M3). When comparing this tree with the initial ones, we can see that relevant
variables are now selected by the learning algorithm. In particular, some continuous
variables which had been measured through the experiments, such as Cooking time, are
now replaced by meaningful ones, such as Cooking type, which is obtained by conjunc-
tion with one more concept introduced in the ontology, i.e. Pasta type.

Table 1(b) presents the evolution of the criteria defined in section 4.2. Though the
misclassification rate remains high, essentially due to the data scarity, it is better for the
last two iterations, while the complexity remains low. Further investigation, through the
examination of the confusion matrix, showed that almost all prediction errors are due to
the assignment of a label close to the right one, for instance High Loss instead of Very
High Loss.

6 Conclusion

Formalising and acquiring new expert knowledge, as well as the construction of reli-
able models are two important aspects of artificial intelligence research in experimental
sciences. Of particular importance is the confidence that domain experts grant to sta-
tistically learnt models. As in other domains (e.g., the semantic web), both data-driven
and ontological knowledge can help each other in their respective tasks.

In this paper, we proposed a collaborative and iterative approach, where expert
knowledge and opinion issued from learnt models was integrated to the ontology de-
scribing the domain knowledge. This formalisation is then re-used to transform avail-
able data and to learn new models from them, these new models being again the source
of additional expert opinions, and so on until experts are satisfied with the results. This
allows both to enrich the ontological knowledge and to increase expert confidence in
the results delivered by learning methods.

The proposed approach is applied to a case study in the field of cereal transfor-
mation. This case study was undertaken iteratively, in tight collaboration with domain
experts. It demonstrates the added value of taking into account ontology-based knowl-
edge, by providing a gain in interpretability and relevance of the results obtained by the



learning method. It also aims to extract, by confronting expert to data-driven models,
ontological knowledge that may be useful in other applications.

The present work is a first step to meet the difficult challenge of building semi-
automated methods. There are several perspectives for future work in that direction: to
handle missing (or imprecisely defined) items in a more appropriate way (for instance
using imprecise probabilities as in recent approaches, see [16]); to consider instances
whose possible properties are only partially known; to define new tree evaluation crite-
ria regarding the stability of the selected variables; to automatise the whole process so
that AI expert are not needed to perform the analysis.
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