Computing expectations over p-boxes: two views (LP and RS) of the same problem

L. Utkin ${ }^{1}$ and S. Destercke ${ }^{2}$

DE RADIOPROTECTION

Problem statement

- information on r.v. X modeled by a p-box $[\underline{F}, \bar{F}]$ - lower (\mathbb{E}) and upper $(\overline{\mathbb{E}})$ exp. on continuous function $h(X)$:

$$
\begin{equation*}
\underline{\mathbb{E}}(h)=\inf _{\underline{F} \leq F \leq \bar{F}} \int_{\mathbb{R}} h(x) \mathrm{d} F, \quad \overline{\mathbb{E}}(h)=\sup _{\underline{F} \leq F \leq \bar{F}} \int_{\mathbb{R}} h(x) \mathrm{d} F \tag{1}
\end{equation*}
$$

- Find optimal distribution $F(\underline{F}(x) \leq F(x) \leq \bar{F}(x))$ for which $\mathbb{E}, \overline{\mathbb{E}}$ are reached

Linear programming (LP) general view

- Approximate F by N points $F\left(x_{i}\right), i=1, \ldots, N$ and solve

$$
\underline{\mathbb{E}}^{*}(h)=\inf \sum_{k=1}^{N} h\left(x_{k}\right) z_{k} \text { or } \overline{\mathbb{E}}^{*}(h)=\sup \sum_{k=1}^{N} h\left(x_{k}\right) z_{k}
$$

subject to

$$
\begin{aligned}
& z_{i} \geq 0, \quad i=1, \ldots, N, \sum_{k=1}^{N} z_{k}=1, \\
& \sum_{k=1}^{i} z_{k} \leq \bar{F}\left(x_{i}\right), \quad \sum_{k=1}^{i} z_{k} \geq \underline{F}\left(x_{i}\right), \quad i=1, \ldots, N
\end{aligned}
$$

$\checkmark \underline{\mathbb{E}}^{*}, \overline{\mathbb{E}}^{*}$ are approximations of $\mathbb{E}, \overline{\mathbb{E}}$

- If N high, computation costs increase, and if N low, ap proximations can be bad ones

Random set (RS) general view
® Mapping Γ from prob. space to power set $\wp(X)$ of a space X - Here, mapping from $[0,1]$ with Lebesgue measure to measurable subsets of \mathbb{R}.

Given continuous p-box $[\underline{F}, \bar{F}]$ $A_{\gamma}=\left[a_{* \gamma}, a_{\gamma}^{*}\right]$ is the set s.t.
$a_{* \gamma}:=\sup \{\bar{F}(x)<\gamma\}=\bar{F}^{-1}(\gamma)$,
$a_{\gamma}^{*}:=\inf \{\underline{F}(x)>\gamma\}=\underline{F}^{-1}(\gamma)$,
P-box $[\underline{F}, \bar{F}]$ equivalent continuous random set with unif. density on $[0,1]$ and

$\Gamma(\gamma)=A_{\gamma}=\left[a_{* \gamma}, a_{\gamma}^{*}\right] \gamma \in[0,1]$.

- Computing $\mathbb{E}, \overline{\mathbb{E}}$ of h can be reformulated

$$
\begin{equation*}
\underline{E}(h)=\int_{0}^{1} \inf _{x \in A_{\gamma}} h(x) d \gamma, \quad \overline{\mathbb{E}}(h)=\int_{0}^{1} \sup _{x \in A_{\gamma}} h(x) d \gamma \tag{2}
\end{equation*}
$$

- Solution easily approximated by discretizing p-box on finite number of levels γ_{i}. Finding inf(sup) on many levels can be difficult, and choosing too few γ_{i} or poor heuristics can again lead to bad approximations
\approx For both approaches, need to find efficient AND reliable algorithms to compute $\mathbb{E}, \overline{\mathbb{E}}$.
- Here, we interest ourselves to the case where h behavior is partially known

The easy case of monotonic functions

- If h is non-decreasing in \mathbb{R}, then we have

$$
\begin{equation*}
\underline{\mathbb{E}}(h)=\int_{\mathbb{R}} h(x) \mathrm{d} \bar{F} \tag{3}
\end{equation*}
$$

$$
\overline{\mathbb{E}}(h)=\int_{\mathbb{R}} h(x) \mathrm{d} \underline{F}
$$

Optimal F for non-decreasing h in bold

One dimension, One maximum

- h has one maximum at point a and is increasing (decrea$\operatorname{sing})$ in $(-\infty, a]([a, \infty))$.

Unconditional expectations

- upper and lower expectations of $h(X)$ on $[\underline{F}, \bar{F}]$ are

$$
\begin{gather*}
\overline{\mathbb{E}}(h)=\int_{-\infty}^{a} h(x) \mathrm{d} \underline{F}+h(a)[\bar{F}(a)-\underline{F}(a)]+\int_{a}^{\infty} h(x) \mathrm{d} \bar{F} \\
\underline{\mathbb{E}}(h)=\int_{-\infty}^{\bar{F}^{-1}(\alpha)} h(x) \mathrm{d} \bar{F}+\int_{\underline{F}^{-1}(\alpha)}^{\infty} h(x) \mathrm{d} \underline{F} \tag{5}
\end{gather*}
$$

or, equivalently

$$
\begin{gather*}
\overline{\mathbb{E}}(h)=\int_{0}^{\underline{\underline{F}}(a)} h\left(a_{\gamma}^{*}\right) d \gamma+[\bar{F}(a)-\underline{F}(a)] h(a)+\int_{\bar{F}(a)}^{1} h\left(a_{* \gamma}\right) d \gamma \tag{6}\\
\underline{E}(h)=\int_{0}^{\alpha} h\left(a_{* \gamma}\right) d \gamma+\int_{\alpha}^{1} h\left(a_{\gamma}^{*}\right) d \gamma, \tag{7}
\end{gather*}
$$

where α is one of the solution of the equation

$$
h\left(\bar{F}^{-1}(\alpha)\right)=h\left(\underline{F}^{-1}(\alpha)\right)
$$

Optimal F for $\overline{\mathbb{E}}(h)$ (vert. jump) Optimal F for $\underline{\mathbb{E}}(h)$ (hor. jump) - LP approach suggest to analytically find the level α, or to approximate solution by scanning different values of α Following formula derived with the RS approach

$\underline{E} h=\int_{0}^{\underline{E}(a)} h\left(a_{* \gamma}\right) d \gamma+\int_{\underline{E}(a)}^{\bar{F}(a)} \min \left(h\left(a_{* \gamma}\right), h\left(a_{\gamma}^{*}\right)\right) d \gamma+\int_{\bar{F}(a)}^{1} h\left(a_{\gamma}^{*}\right) d \gamma$

shows that approximation (either outer or inner) by discretization requires at most 2 computations per discretized levels, if α is unknown.

Conditional expectations

- We suppose that the event $B=\left[b_{0}, b_{1}\right]$ has been observed. Lower and upper conditional expectations under B are computed as follows

$$
\underline{\mathbb{E}}(h \mid B)=\inf _{E \leq F \leq \bar{F}} \frac{\int_{\mathbb{R}} h(x) I_{B}(x) \mathrm{d} F}{\int_{\mathbb{R}} I_{B}(x) \mathrm{d} F}, \quad \overline{\mathbb{E}}(h \mid B)=\sup _{\underline{F} \leq F \leq \bar{F}} \frac{\int_{\mathbb{R}} h(x) I_{B}(x) \mathrm{d} F}{\int_{\mathbb{R}} I_{B}(x) \mathrm{d} F} .
$$

In the case of h having one maximum, these formulas become
$\overline{\mathbb{E}}(h \mid B) \underset{\underline{F}\left(b_{0}\right) \leq \alpha \leq \bar{F}\left(b_{0}\right)}{=} \sup ^{\frac{1}{\beta-\alpha}} \Psi(\alpha, \beta), \quad \underline{\mathbb{E}}(h \mid B) \underset{\underline{F}\left(b_{0}\right) \leq \alpha \leq \bar{F}\left(b_{0}\right)}{=} \inf _{\beta-\alpha}^{\beta} \Phi(\alpha, \beta)$, $\underline{F}\left(b_{1}\right) \leq \beta \leq \bar{F}\left(b_{1}\right) \quad \underline{F}\left(b_{1}\right) \leq \beta \leq \bar{F}\left(b_{1}\right)$
with

$$
\Psi(\alpha, \beta)=\int_{\alpha}^{\beta} \sup _{x \in\left(A_{\gamma} \cap B\right)} h(x) \mathrm{d} \gamma, \quad \Phi(\alpha, \beta)=\int_{\alpha}^{\beta} \inf _{x \in\left(A_{\gamma} \cap B\right)} h(x) \mathrm{d} \gamma
$$

Optimal F for $\overline{\mathbb{E}}(h \mid B)$

- Numerator and denominator play opposite role in the evolution of expectations (e.g. for the upper one, both increase with the value of $\beta-\alpha$).
- The main problem is to find the couple (α, β) for which extremal expectations are reached. One possibility is to start with $(\alpha, \beta)=\left(\underline{F}\left(b_{0}\right), \bar{F}\left(b_{1}\right)\right)$ and then to shrink this interval
Many dimensions, One global maximum
- We assume $h(X, Y)$ is a function from $\mathbb{R}^{2} \rightarrow \mathbb{R}$.

Our uncertainty model about X, Y becomes a bivariate p-box
$\underline{F}(x, y) \leq F(x, y) \leq \bar{F}(x, y), \forall(x, y) \in \mathbb{R}^{2}$.

- h has one global maximum at point $\left(x_{0}, y_{0}\right)$ and is nonincreasing in every direction from $\left(x_{0}, y_{0}\right)$
- We study how upper/lower expectations can be computed under various assumptions of independence.
Random set corresponding to the marginal p-box of Y given by sets $B_{\kappa}=\left[b_{* \kappa}, b_{\kappa}^{*}\right]$ s.t.
$b_{* \kappa}:=\sup \left\{y \in\left[b_{\text {inf }}, b_{\text {sup }}\right]: \bar{F}(y)<\kappa\right\}=\bar{F}^{-1}(\kappa)$
$b_{\kappa}^{*}:=\inf \left\{y \in\left[b_{\text {inf }}, b_{\text {sup }}\right]: \underline{F}(y)>\kappa\right\}=\underline{F}^{-1}(\kappa)$.

Case of strong independence ($L P$)

- If h separable (i.e. $h(X, Y)=h_{1}(X) h_{2}(Y)$), then under strong independence, $\underline{E}(h)=\mathbb{E}\left(h_{1}\right) \cdot \mathbb{E}\left(h_{2}\right)$ and $\overline{\mathbb{E}}(h)=\overline{\mathbb{E}}\left(h_{1}\right) \cdot \overline{\mathbb{E}}\left(h_{2}\right)$.
- If h not separable, then, under our assumptions and by LP approach, we get the formula
$\overline{\mathbb{E}}(h(X, Y))=\sup _{F_{2} \leq F_{2}<\bar{F}_{2}} \int_{\mathbb{R}} \overline{\mathbb{E}}(h(X, z)) \mathrm{d} F_{2}(z)=\sup \xi\left(y_{0}\right)\left[\bar{F}_{2}\left(y_{0}\right)-\underline{F}_{2}\left(y_{0}\right)\right]$ $+\int_{-\infty}^{y_{0}} \sup \xi(z) \mathrm{d} \underline{F}_{2}(z)+\int_{y_{0}}^{\infty} \sup \xi(z) \mathrm{d} \bar{F}_{2}(z)$
where
$\sup _{\underline{F}_{1} \leq F_{1} \leq \bar{F}_{1}} \xi(z)=h\left(x_{0}, z\right)\left[\bar{F}_{1}\left(x_{0}\right)-\underline{F}_{1}\left(x_{0}\right)\right]+\int_{-\infty}^{x_{0}} h(x, z) \mathrm{d} \underline{F}_{1}+\int_{x_{0}}^{\infty} h(x, z) \mathrm{d} \bar{F}_{1}$.
- This explicit formula comes down to concentrate probability mass on $\left(x_{0}, y_{0}\right)$ and is similar to the one obtained for the univariate case.
- Formula obtained for lower expectation is

$$
\begin{aligned}
& \mathbb{E}(h(X, Y))=\inf _{E_{2} \leq F_{2} \leq F_{2}} \int_{\mathbb{R}} \mathbb{E}\left(h(X, z) \mathrm{d} F_{2}(z)\right. \\
& =\int_{-\infty}^{\bar{F}_{2}^{1}(\beta)} \int_{-\infty}^{\bar{F}_{1}^{1}\left(\alpha \alpha_{z}\right)} h(x, z) \mathrm{d} \bar{F}_{1} \mathrm{~d} \bar{F}_{2}+\int_{-\infty}^{\bar{F}_{-}^{1}(\beta)} \int_{\underline{E}_{-}^{1}(\alpha z)}^{\infty} h(x, z) \mathrm{d} \underline{E}_{1} \mathrm{~d} \bar{F}_{2} \\
& \int_{E_{2}^{1}(\beta)}^{\infty} \int_{-\infty}^{\bar{F}_{1}^{1}\left(\alpha_{z}\right)} h(x, z) \mathrm{d} \bar{F}_{1} \mathrm{~d} \underline{E}_{2}+\int_{E_{2}^{-1}(\beta)}^{\infty} \int_{E_{1}^{-1}\left(\alpha z_{3}\right)}^{\infty} h(x, z) \mathrm{d} \underline{E}_{1} \mathrm{~d} \underline{E}_{2} .
\end{aligned}
$$

where α_{z} is a solution of equation $h\left(\bar{F}_{1}^{-1}(\alpha), z\right)=h\left(\underline{F}_{1}^{-1}(\alpha), z\right)$ and β solution of $\underline{\mathbb{E}}\left(h\left(X, \underline{F}_{2}^{-1}(\beta)\right)\right)=\underline{\mathbb{E}}\left(h\left(X, \bar{F}_{2}^{-1}(\beta)\right)\right.$.

- Again, "transitions" levels α_{z}, β have to be found, most of the time by numerical approximations.
- For a n dimensional function with one global maximum, n such levels must be found to compute lower expectation

Case of random set independence (\mathbb{R})

Given marginal random sets, we have
$\underline{E}(h)=\int_{0}^{1} \int_{0}^{1} \inf _{(x, y) \in\left[B_{\kappa} \times A_{\gamma}\right]} h_{\gamma}(x, y) \mathrm{d} \kappa \mathrm{d} \gamma, \quad \overline{\mathbb{E}}(h)=\int_{0}^{1} \int_{0}^{1} \sup _{(x, y) \in\left[B_{\kappa} \times A_{\gamma}\right]} h(x, y) \mathrm{d} \kappa \mathrm{d} \gamma$,

- Again, solution can be (outer or inner) approximated by discretized levels, the main difficulty being to find the inf, sup (here, at most 4 computations are needed per descretized levels) - From a numerical standpoint, RS ind. equivalent to $1^{s t}$ order Monte-carlo sim. where A_{γ}, B_{κ} are randomly sampled. - Interest : random set independence computationally attrac tive, while result is an outer approximation of results in case of strong and epistemic independence.

Case of unknown interaction

- Given random set marginals, unknown interaction is qeuivalent to consider every possible joint random sets having those for marginals.
Method : approximate $[\underline{F}, \bar{F}]_{X},[\underline{F}, \bar{F}]_{Y}$ with sets $A_{\gamma_{i}}, B_{\kappa_{j}}(i, j=$ $1, \ldots, n$) and where all sets have equal weights. Then compute (for an approximation of lower expectation)

$$
\underline{\mathbb{E}}^{*}(h)=\inf _{\Gamma_{\gamma, \kappa} \in \Gamma_{\gamma, k}^{*}} \sum_{\substack{x \in A_{\gamma_{i}} \\ y \in B_{\kappa_{j}}}} \inf h(x, y) m_{\Gamma_{\gamma, k}}\left(A_{\gamma_{i}} \times B_{\kappa_{j}}\right)
$$

subject to

$$
\sum_{j=1}^{n} m_{\Gamma_{\gamma, \kappa}}\left(A_{\gamma_{i}} \times B_{\kappa_{j}}\right)=m_{\Gamma_{\gamma}}\left(A_{\gamma_{i}}\right), \quad \sum_{i=1}^{n} m_{\Gamma_{\gamma, \kappa}}\left(A_{\gamma_{i}} \times B_{\kappa_{j}}\right)=m_{\Gamma_{\gamma}}\left(B_{\kappa_{j}}\right)
$$

where $\Gamma_{\gamma, \kappa}^{*}$ is the set of joint random sets. $\overline{\mathbb{E}}^{*}(h)$ is computed by replacing inf with sup.

One dimension, many extrema

- h has alternate local maxima (a_{i}) and local minima $\left(b_{i}\right)$. - LP approach shows that optimal F reaching $\mathbb{E}(h)$ is a combination of four different local subcases that are part of a large LP problem.
A

B

D

Example of Optimal F with general h which extrema are known

- These four subcases can be found back in the following formula using random sets

$$
\underline{\mathbb{E}}(h)=\int_{0}^{\underline{F}\left(b_{n}\right)} \min _{b_{i} \in A_{\gamma}}\left(h\left(a_{* \gamma}\right), h\left(b_{i}\right), h\left(a_{\gamma}^{*}\right)\right) d \gamma+\int_{\underline{F}\left(b_{n}\right)}^{1} h\left(a_{* \gamma}\right) d \gamma,
$$

- Optimal distribution F is a succession of vertical jumps (prob. mass concentrated on b_{i}) and of horizontal jumps (to avoid highest values of h)

perspectives

- Pursue investigations on multivariate case, by generalizing existing results to more general functions and to n dimensional case and by exploring the case of epistemic independence - Design efficient algorithms to make good approximations (i.e. how to find good values for levels α_{i} with functions having many extrema?)
- Study various ways to integrate information about dependencies, e.g. by using copulas or adding constraints to LP problems.

