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/ Problem statement

b= information on r.v. X modeled by a p-box [F, F|
= Jower (E) and upper (E) exp. on continuous function h(X) :

E(h) = inf _
F<F<F

/h(a:)dF, E(h) = sup /h(a:)dF (1)

R F<F<FYR

b= Find optimal distribution F (F(z) < F(z)
E.E are reached.

< F(z)) for which

Linear programming (LF) general view

= Approximate F' by N points F(z;), i = 1,..., N and solve

N N
E*(h)=inf Zh(:z:k)zk or E (h)=sup Zh<5’7k>2k
k=1 k=1
subject to
N
2z >0, 1=1, ,N,szzl,
k=1
( (
“k S F($Z>7 sz Z E(wl)v 1= 17 7N
k=1 k=1

= E* E' are approximations of E,E
= If N high, computation costs increase, and if N low, ap-
proximations can be bad ones

Random set (RS) general view

= Mapping I' from prob. space to power set p(X) of a space X
= Here, mapping from |0, 1] with Lebesgue measure to mea-
surable subsets of R.

Given continuous p-box [F, F]
Ay = |axy, a5] is the set s.t.

sy = sup{F(z) <7y} =F
ar = inf{F(z) >~} =F

= P-box [F,F] equivalent
continuous random set with
unif. density on |0, 1] and

[(7) = Ay = [axy, a5] v € [0, 1]

= Computing E, E of h can be reformulated

| 1
E(h) :/0 inf h(x) dv, E(h) :/O sup h(z) dvy.  (2)

rEA, reA,

= Solution easily approximated by discretizing p-box on f{i-
nite number of levels ~;. Finding inf(sup) on many levels can be
difficult, and choosing too few ~; or poor heuristics can again
lead to bad approximations.

= For both approaches, need to find efficient AND reliable
algorithms to compute E. E.

= Here, we interest ourselves to the case where h behavior
is partially known

The easy case of monotonic functions

= If h is non-decreasing in R, then we have :

Optimal F' for non-decreasing h in bold

One dimension, One maximum

= h has one maximum at point a¢ and is increasing (decrea-
sing) in (—oo, al (|a, 00)).

Unconditional expectations

p= upper and lower expectations of h(X) on [F, F| are

E(h) = /a hz)dE + h(a) [F(a) — F(a)] + /OO h(z)dF (4)
F_l(oz) o 00
E(h) = h(x)dF h(x)dF (5)
m=[ +/F1<@>”

1

_ F(a) _
B = [ ha)dy+ [Fla) ~ Elhta) + |

h(a, )dy (6)
F(a)

« 1
B(h) = [ hlaw)dy+ [ e, 7
0 «
where « is one of the solution of the equation

h (F‘l(a)) — h (E—1<a)) . (8)

Computing expectations over p-boxes : two views
) of the same problem
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a
Optimal F for E(h) (vert. jump) Optimal F for E(h) (hor. jump)

> approach suggest to analytically find the level «, or to
approximate solution by scanning different values of «.
= Following formula derived with the approach

F(a F a . * 1 *
Eh= [ h(a.)dy+ [ min((a.n) has)dy+ [, hlas)dy

shows that approximation (either outer or inner) by discretiza-
tion requires at most 2 computations per discretized levels, if
a is unknown.

Conditional expectations

= We suppose that the event B = [by, b;] has been observed.
Lower and upper conditional expectations under B are compu-
ted as follows :

E(h|B)= inf J 12) [p(x)dF

Jr P )]B< )JAF
F<r<F Jplp(z)dF |

. E(h|B) = sup

F<F<F

In the case of h having one maximum, these formulas become

E(B)= sw_ ———W(af), E(HB)= il :

F(by)<a<F(by) P ~ Fby)<a<F(by) B — @
F(b)<B<F (b)) E(b))<B<F(by)

O(a, B),

by “ b
Optimal F for E(h|B)

= Numerator and denominator play opposite role in the evo-
lution of expectations (e.g. for the upper one, both increase
with the value of 5 — o).

= The main problem is to find the couple («, ) for which
extremal expectations are reached. One possibility is to start
with (o, 3) = (F(by), F(b1)) and then to shrink this interval.

Many dimensions, One global maximum

= We assume h(X,Y) is a function from R? — R.
Our uncertainty model about X, Y becomes a bivariate p-box

F(z,y) < F(z,y) < F(z,y), Y(z,y) € R*.

= h has one global maximum at point (zg,y;) and is non-
increasing in every direction from (x, y).

= We study how upper/lower expectations can be computed
under various assumptions of independence.

Random set corresponding to the marginal p-box of Y given
by sets By = |bxx, b5 s.t.

e = 5up{y € [binfbsup] - Fly) < 5} =F (1),
b = nf{y € [bypf, bsupl : F(y) > K} = F~l(k).

Case of strong independence (LF)
= If h separable (i.e. h(X,Y) = h1(X)ho(Y)), then under strong
independence, E(h) = E(hy) - E(h9) and E(h) = E(hy) - E(hs).
= If A not separable, then, under our assumptions and by LP
approach, we get the formula

E(h(X,Y)) = sup
Fo<Fy<F

+ [ : qup E(2)dFs(2) + /y OO sup £(2)dFa(2)

/RE(h(X, 2))dEy(2) = sup&(yo) [Fa(yo) — Folyo)]

where
up €(2) = hlan.2) [Filao) = Frfao)] + [ hlas2)dBy + [ hia,2)dFy,
F\<F<F, X Lo

= This explicit formula comes down to concentrate probabi-
lity mass on (xg,y) and is similar to the one obtained for the
univariate case.

= Formula obtained for lower expectation is

E(h(X,Y))= iof _ / E(h(X, 2))dF(2)
Fo<F<IyJR
F, (8) (F) (o) o F, (8) oo B
—/ / h(z,z)dF1dFy + /1 h(z,z)dF{dFy

00 Fl_l(ozz) o 00 Oz
+ / / h(x, 2)dF1dFy + / / (@, z)dEdFy.
FY8) J - FyN(B) JE (o)
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where o is a solution of equation h(ﬁfl(oz), z) = h(El_l(a), z) and

8 solution of E(h(X, F; (8))) = E(h(X, F5 ' (8)).

= Again, "transitions" levels «., 5 have to be found, most of
the time by numerical approximations.

= For a n dimensional function with one global maximum, n
such levels must be found to compute lower expectation.

Case of random set independence (RS)
Given marginal random sets, we have

// int // sup h(x
T,y)E BXA (z,y)€| B x A,

= Again, solution can be (outer or inner) approximated by dis-
cretized levels, the main difficulty being to find the inf, sup (here,
at most 4 computations are needed per descretized levels)

= From a numerical standpoint, RS ind. equivalent to 15 or-
der Monte-carlo sim. where A, B, are randomly sampled.

= Interest : random set independence computationally attrac-
tive, while result is an outer approximation of results in case
of strong and epistemic independence.

x, y)drdy, Ly)drdy,

Case of unknown interaction

p= Given random set marginals, unknown interaction is geui-
valent to consider every possible joint random sets having
those for marginals.

= Method : approximate [F, F]x,[F, F|y with sets A, By, (i, ] =
1,...,n) and where all sets have equal weights. Then compute
(for an approximation of lower expectation)

* o .
E*(h) = F%ig%% Z xlefiz h(z,y)mrp_, (Ay, X Bg))

yEB
subject to
n n
Zmr%,{(A% X B/‘&j) — mey(A’Y) me%,i(A% X Blij) — mF7<B/fj)7
j=1 1=1

where I} . is the set of joint random sets. E"(h) is computed by
replacmg mf with sup.

One dimension, many extrema

= h has alternate local maxima (a;) and local minima (b;).

= approach shows that optimal F' reaching E(h) is a com-
bination of four different local subcases that are part of a large
LP problem.

b @i by bi @i bjyy

by a1 by aQb?) as b4 a4 b5

Example of Optimal F with general h which extrema are known

= These four subcases can be found back in the following
formula using

F(by) 1
B = [ i (h(aw). B M@+ [ ),

bicA, F(by)

= Optimal distribution F' is a succession of vertical jumps
(prob. mass concentrated on b;) and of horizontal jumps (to
avoid highest values of h)

perspectives

= Pursue investigations on multivariate case, by generalizing
existing results to more general functions and to n dimensional
case and by exploring the case of epistemic independence

= Design efficient algorithms to make good approximations
(i.e. how to find good values for levels «; with functions having
many extrema ?)

= Study various ways to integrate information about depen-
dencies, e.g. by using copulas or adding constraints to LP pro-
blems.




