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Problem statement
information on r.v. X modeled by a p-box [F , F ]
lower (E) and upper (E) exp. on continuous function h(X) :

E(h) = inf
F≤F≤F

∫

R

h(x)dF , E(h) = sup
F≤F≤F

∫

R

h(x)dF (1)

Find optimal distribution F (F (x) ≤ F (x) ≤ F (x)) for which
E, E are reached.

Linear programming (LP) general view

Approximate F by N points F (xi), i = 1, ..., N and solve

E
∗(h)=inf

N
∑

k=1

h(xk)zk or E
∗
(h)=sup

N
∑

k=1

h(xk)zk

subject to

zi ≥ 0, i = 1, ..., N,

N
∑

k=1

zk = 1,

i
∑

k=1

zk ≤ F (xi),

i
∑

k=1

zk ≥ F (xi), i = 1, ..., N.

E
∗, E

∗ are approximations of E, E

If N high, computation costs increase, and if N low, ap-
proximations can be bad ones

Random set (RS) general view

Mapping Γ from prob. space to power set ℘(X) of a space X

Here, mapping from [0, 1] with Lebesgue measure to mea-
surable subsets of R.

Given continuous p-box [F , F ]
Aγ = [a∗γ, a∗γ] is the set s.t.

a∗γ := sup{F (x) < γ} = F
−1

(γ),

a∗γ := inf{F (x) > γ} = F−1(γ),

P-box [F, F ] equivalent
continuous random set with
unif. density on [0, 1] and

Γ(γ) = Aγ = [a∗γ, a∗γ] γ ∈ [0, 1].
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Computing E, E of h can be reformulated

E(h) =

∫ 1

0
inf

x∈Aγ

h(x) dγ, E(h) =

∫ 1

0
sup

x∈Aγ

h(x) dγ. (2)

Solution easily approximated by discretizing p-box on fi-
nite number of levels γi. Finding inf(sup) on many levels can be
difficult, and choosing too few γi or poor heuristics can again
lead to bad approximations.

For both approaches, need to find efficient AND reliable
algorithms to compute E, E.

Here, we interest ourselves to the case where h behavior
is partially known

The easy case of monotonic functions

If h is non-decreasing in R, then we have :

E(h) =

∫

R

h(x)dF , E(h) =

∫

R

h(x)dF (3)

1 1

Optimal F for non-decreasing h in bold

One dimension, One maximum
h has one maximum at point a and is increasing (decrea-

sing) in (−∞, a] ([a,∞)).

Unconditional expectations

upper and lower expectations of h(X) on [F , F ] are

E(h) =

∫ a

−∞
h(x)dF + h(a)

[

F (a) − F (a)
]

+

∫ ∞

a
h(x)dF (4)

E(h) =

∫ F
−1

(α)

−∞
h(x)dF +

∫ ∞

F−1(α)
h(x)dF (5)

or, equivalently

E(h) =

∫ F (a)

0
h(a∗

γ
)dγ + [F (a) − F (a)]h(a) +

∫ 1

F (a)
h(a∗γ)dγ (6)

E(h) =

∫ α

0
h(a∗γ)dγ +

∫ 1

α
h(a∗γ)dγ, (7)

where α is one of the solution of the equation

h
(

F
−1

(α)
)

= h
(

F−1(α)
)

. (8)

1

a

α

1

a

α

Optimal F for E(h) (vert. jump) Optimal F for E(h) (hor. jump)

LP approach suggest to analytically find the level α, or to
approximate solution by scanning different values of α.

Following formula derived with the RS approach

Eh=
∫ F (a)

0 h(a∗γ)dγ+
∫ F (a)

F (a) min(h(a∗γ),h(a∗γ))dγ+
∫ 1

F (a) h(a∗γ)dγ

shows that approximation (either outer or inner) by discretiza-
tion requires at most 2 computations per discretized levels, if
α is unknown.

Conditional expectations

We suppose that the event B = [b0, b1] has been observed.
Lower and upper conditional expectations under B are compu-
ted as follows :

E(h|B) = inf
F≤F≤F

∫

R
h(x)IB(x)dF

∫

R
IB(x)dF

, E(h|B) = sup
F≤F≤F

∫

R
h(x)IB(x)dF

∫

R
IB(x)dF

.

In the case of h having one maximum, these formulas become

E(h|B) = sup
F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Ψ(α, β), E(h|B) = inf

F (b0)≤α≤F (b0)

F (b1)≤β≤F (b1)

1

β − α
Φ(α, β),

with

Ψ(α, β) =

∫ β

α
sup

x∈(Aγ∩B)
h(x)dγ, Φ(α, β) =

∫ β

α
inf

x∈(Aγ∩B)
h(x)dγ.

1

α

β

b0 b1
a

Optimal F for E(h|B)

Numerator and denominator play opposite role in the evo-
lution of expectations (e.g. for the upper one, both increase
with the value of β − α).

The main problem is to find the couple (α, β) for which
extremal expectations are reached. One possibility is to start
with (α, β) = (F (b0), F (b1)) and then to shrink this interval.

Many dimensions, One global maximum

We assume h(X, Y ) is a function from R
2 → R.

Our uncertainty model about X, Y becomes a bivariate p-box

F (x, y) ≤ F (x, y) ≤ F (x, y), ∀(x, y) ∈ R
2.

h has one global maximum at point (x0, y0) and is non-
increasing in every direction from (x0, y0).

We study how upper/lower expectations can be computed
under various assumptions of independence.
Random set corresponding to the marginal p-box of Y given
by sets Bκ = [b∗κ, b∗κ] s.t.

b∗κ := sup{y ∈ [binf , bsup] : F (y) < κ} = F
−1

(κ),

b∗κ := inf{y ∈ [binf , bsup] : F (y) > κ} = F−1(κ).

Case of strong independence (LP)

If h separable (i.e. h(X, Y ) = h1(X)h2(Y )), then under strong
independence, E(h) = E(h1) · E(h2) and E(h) = E(h1) · E(h2).

If h not separable, then, under our assumptions and by LP
approach, we get the formula

E(h(X, Y )) = sup
F 2≤F2≤F 2

∫

R

E(h(X, z))dF2(z) = sup ξ(y0)
[

F 2(y0) − F 2(y0)
]

+

∫ y0

−∞
sup ξ(z)dF 2(z) +

∫ ∞

y0

sup ξ(z)dF 2(z)

where

sup
F 1≤F1≤F 1

ξ(z) = h(x0, z)
[

F 1(x0) − F 1(x0)
]

+

∫ x0

−∞
h(x, z)dF 1 +

∫ ∞

x0

h(x, z)dF 1.

This explicit formula comes down to concentrate probabi-
lity mass on (x0, y0) and is similar to the one obtained for the
univariate case.

Formula obtained for lower expectation is

E(h(X, Y )) = inf
F 2≤F2≤F 2

∫

R

E(h(X, z))dF2(z)

=

∫ F
−1
2 (β)

−∞

∫ F
−1
1 (αz)

−∞
h(x, z)dF 1dF 2 +

∫ F
−1
2 (β)

−∞

∫ ∞

F−1
1 (αz)

h(x, z)dF 1dF 2

+

∫ ∞

F−1
2 (β)

∫ F
−1
1 (αz)

−∞
h(x, z)dF 1dF 2 +

∫ ∞

F−1
2 (β)

∫ ∞

F−1
1 (αz)

h(x, z)dF 1dF 2.

where αz is a solution of equation h(F
−1
1 (α), z) = h(F−1

1 (α), z) and
β solution of E(h(X, F−1

2 (β))) = E(h(X, F
−1
2 (β)).

Again, "transitions" levels αz, β have to be found, most of
the time by numerical approximations.

For a n dimensional function with one global maximum, n

such levels must be found to compute lower expectation.

Case of random set independence (RS)

Given marginal random sets, we have

E(h) =

∫ 1

0

∫ 1

0
inf

(x,y)∈[Bκ×Aγ]
h(x, y)dκdγ, E(h) =

∫ 1

0

∫ 1

0
sup

(x,y)∈[Bκ×Aγ]
h(x, y)dκdγ,

Again, solution can be (outer or inner) approximated by dis-
cretized levels, the main difficulty being to find the inf, sup (here,
at most 4 computations are needed per descretized levels)

From a numerical standpoint, RS ind. equivalent to 1st or-
der Monte-carlo sim. where Aγ, Bκ are randomly sampled.

Interest : random set independence computationally attrac-
tive, while result is an outer approximation of results in case
of strong and epistemic independence.

Case of unknown interaction

Given random set marginals, unknown interaction is qeui-
valent to consider every possible joint random sets having
those for marginals.

Method : approximate [F, F ]X,[F , F ]Y with sets Aγi
, Bκj

(i, j =
1, . . . , n) and where all sets have equal weights. Then compute
(for an approximation of lower expectation)

E
∗(h) = inf

Γγ,κ∈Γ∗
γ,κ

∑

inf
x∈Aγi
y∈Bκj

h(x, y)mΓγ,κ
(Aγi

× Bκj
)

subject to

n
∑

j=1

mΓγ,κ
(Aγi

× Bκj
) = mΓγ

(Aγi
),

n
∑

i=1

mΓγ,κ
(Aγi

× Bκj
) = mΓγ

(Bκj
),

where Γ∗γ,κ is the set of joint random sets. E
∗
(h) is computed by

replacing inf with sup.

One dimension, many extrema

h has alternate local maxima (ai) and local minima (bi).
LP approach shows that optimal F reaching E(h) is a com-

bination of four different local subcases that are part of a large
LP problem.

bi bi+1ai

αi

A

bi bi+1ai

αi
B

bi bi+1ai

αiC

bi bi+1ai

αi D
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α4
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D

Example of Optimal F with general h which extrema are known

These four subcases can be found back in the following
formula using random sets

E(h) =

∫ F (bn)

0
min
bi∈Aγ

(h(a∗γ), h(bi), h(a∗γ))dγ +

∫ 1

F (bn)
h(a∗γ)dγ,

Optimal distribution F is a succession of vertical jumps
(prob. mass concentrated on bi) and of horizontal jumps (to
avoid highest values of h)

perspectives
Pursue investigations on multivariate case, by generalizing

existing results to more general functions and to n dimensional
case and by exploring the case of epistemic independence

Design efficient algorithms to make good approximations
(i.e. how to find good values for levels αi with functions having
many extrema ?)

Study various ways to integrate information about depen-
dencies, e.g. by using copulas or adding constraints to LP pro-
blems.


