# Cautious conjunctive merging of belief **functions**

Sébastien Destercke<sup>1,2</sup>, Didier Dubois<sup>2</sup> and Eric Chojnacki<sup>1</sup>

<sup>1</sup>Institute of radioprotection and nuclear safety, Cadarache, France

<sup>2</sup>Toulouse institute of computer science, University Paul-Sabatier

ECSOARU 2007







## Problem statement

### Merging multiple belief functions

- Information from multiple sources modeled by belief functions
  - If possible, merge conjunctively into a single belief function:
    - If sources can be judged independent ⇒ use "Dempster's rule"
    - If independence assumption unrealistic ⇒ cautious merging rule is one solution

## Principle of cautious conjunctive merging

Keep as much information as possible (conjunctive) from each source while adding as few additional assumptions as possible (cautious).



## Belief functions formalism

## Basic belief assignment (bba)

- X finite space with elements  $x_1, \ldots, x_{|X|}$
- bba: function  $m: 2^{|X|} \to [0,1]$  s.t.  $m(\emptyset) = 0$  and  $\sum_{A \subset X} m(A) = 1$
- a set A with positive mass m(A) > 0 is a focal element

## Three measures: Belief, Plausibility, Commonality

- Belief:  $bel(E) = \sum_{A \subseteq E} m(A)$
- Plausibility:  $pl(E) = \sum_{A \cap E \neq \emptyset} m(A) = 1 bel(A^c)$
- Commonality:  $q(E) = \sum_{E \subseteq A} m(A)$

## Belief function as a probability family

bba m induces  $\mathcal{P}_m = \{P | \forall A \subset X, Bel(A) \leq P(A) \leq Pl(A)\}$ 

# Two special kinds of bbas

## Possibility distributions

- Mapping  $\pi: X \to [0, 1]$  and  $\exists x \in X \text{ s.t. } \pi(x) = 1$
- Possibility measure:  $\Pi(A) = \sup_{x \in A} \pi(x)$
- Necessity measure:  $N(A) = 1 - \Pi(A^c)$
- Equivalent to random set with nested focal elements
- $\Pi(A) = PI(A)$  and N(A) = BeI(A)



## Generalized p-boxes

- Two comonotone funct.  $F, \overline{F}$  on X inducing a weak order  $R: \overline{\underline{F}}(x_i) \leq \overline{\underline{F}}(x_i) \rightarrow x_i \leq_R x_i$
- $\bullet$   $\exists \overline{x} \text{ s.t. } \overline{F}(\overline{x}) = 1, x \text{ s.t. } F(x) = 0$
- $F(x) = Bel(\{x_i \leq_B x\}), \overline{F}(x) = Pl(\{x_i \leq_B x\})$
- $A_i = \{x_{inf}^i, \dots, x_{SUD}^i\}_{\leq D}$  and  $A_j = \{x_{inf}^j, \dots, x_{sup}^j\}_{\leq R}$  two distinct focal sets of a bba m. Then, m is a gen p-box iff  $(x_{inf}^i \leq_R x_{inf}^j \text{ and } x_{sup}^i \leq_R x_{sup}^j) \text{ or } (x_{inf}^i \geq_R x_{inf}^j)$ and  $x_{sup}^i \geq_R x_{sup}^j$   $\forall A_i, A_i \Rightarrow$  focal sets are "shifted" with respect to R





# Compare informative contents of bbas

### Three usual information orderings of bbas

 $m_1 \sqsubseteq_x m_2$ :  $m_1$  more x-committed than  $m_2$ 

- pl-ordering: if  $pl_1(A) \leq pl_2(A) \ \forall A \subseteq X$ , we note  $m_1 \sqsubseteq_{pl} m_2$   $m_1 \sqsubseteq_{pl} m_2 \Leftrightarrow \mathcal{P}_{m_1} \subseteq \mathcal{P}_{m_2}$
- q-ordering: if  $q_1(A) \le q_2(A) \ \forall A \subseteq X$ , we note  $m_1 \sqsubseteq_q m_2$
- s-ordering: if m₁ is a specialization of m₂, we note m₁ ⊑₅ m₂
   If m₁, m₂ are weight vectors, then bba m₁ is a specialization of bba m₂ if ∃ a stochastic matrix S s.t.
  - $\longrightarrow$   $m_1 = S \cdot m_2$
  - $\triangleright$   $S_{ij} > 0 \Rightarrow A_i \subseteq B_i$
  - $ightharpoonup m_2(A)$  "flow downs" to subsets of A in  $m_1$

 $m_1 \sqsubseteq_s m_2$  imply both  $m_1 \sqsubseteq_{pl} m_2, m_1 \sqsubseteq_a m_2$  (but **not** the reverse)



# **Principles**

Given  $m_1$ ,  $m_2$  and their sets of focal elements  $\mathcal{F}_1$ ,  $\mathcal{F}_2$ , the result of conjunctively merging  $m_1$ ,  $m_2$  is a bba m obtained in 2 steps:

- 1. Define a joint bba  $m_{12}$  s.t.  $m_1(A) = \sum_{B \in \mathcal{F}_2} m_{12}(A, B) \ \forall A$ and likewise for  $m_2$  (Marginal preservation)
- 2.  $m_{12}(A, B)$  is allocated to, and only to  $A \cap B$  (Conjunctive allocation)

 $\mathcal{M}_{Y}^{m_1 \cap m_2}$ : set of conjunctively merged bbas m. Every such bba is a specialization of  $m_1$  and  $m_2$ .



# 3 situations for $\mathcal{M}_X^{m_1 \cap m_2}$

- Either  $\forall A \in \mathcal{F}_1, B \in \mathcal{F}_2, A \cap B \neq \emptyset$ .  $m_1, m_2$  are said to be **logically consistent**  $\Rightarrow \mathcal{M}_X^{m_1 \cap m_2}$  Contains only normalized bbas  $(m(\emptyset) = 0)$
- either  $\exists A, B \ A \cap B = \emptyset$  and  $\exists$  merged bba m s.t.  $m(\emptyset) = 0$   $(\mathcal{P}_{m_1} \cap \mathcal{P}_{m_2} \neq \emptyset)$ .  $m_1, m_2$  are said to be **non-conflicting**  $\Rightarrow \mathcal{M}_X^{m_1 \cap m_2}$  contains both normalized and subnormalized bbas.
- or there is no merged bba m s.t.  $m(\emptyset) = 0$  ( $\mathcal{P}_{m_1} \cap \mathcal{P}_{m_2} = \emptyset$ ).  $m_1, m_2$  are said to be **conflicting**  $\Rightarrow \mathcal{M}_X^{m_1 \cap m_2}$  contains only subnormalized bbas



# Merging with commensurate bbas

### Principles

- order focal elements  $\mathcal{F}_1, \mathcal{F}_2$  of  $m_1, m_2$
- bbas  $(\mathcal{F}_1, m_1)$  and  $(\mathcal{F}_2, m_2)$  form two partitions of the unit interval
- take the coarsest common partition refining these two ones, then take conjunctive allocation for each element of this partition.
- result  $\in \mathcal{M}_{X}^{m_{1} \cap m_{2}}$  depend of chosen ordering of focal elements

#### Illustration



# Merging with equi-commensurate bbas

#### Principle

Take a refinement such that all weights are equal

#### Illustration

$$m'$$
  $R_1$   $R_2$   
0.5  $A_1$   $B_1$  5 lines with  $m$ =0.1  
0.1  $A_2$   $B_1$  "Equi-comm."  
0.2  $A_2$   $B_2$  → 2 lines with  $m$ =0.1  
0.1  $A_3$   $B_3$   
0.1  $A_3$   $B_4$ 

#### Result

With weights small enough and proper re-ordering of elements, we can get as close as we want to any bba  $\in \mathcal{M}_{Y}^{m_1 \cap m_2}$ 



# Basic principles

#### **Problem**

Find a merging rule ( $\bigwedge$ ) resulting in a bba  $m \in \mathcal{M}_{\chi}^{m_1 \cap m_2}$  that is "least"-committed, here in the sense of maximized expected cardinality.

## Basic requirements

- $\bigwedge$  should be idempotent:  $\bigwedge(m, m) = m$
- If  $m_2$  is a specialization of  $m_1$ , then  $\bigwedge(m_1, m_2) = m_2$
- ⇒ Concern special cases and do not provide general guidelines

#### Idea

Find the proper ordering of (equi-)commensurate bbas that maximizes expected cardinality.



## Main result

A merged bba m having maximal cardinality ( $m \in \mathcal{M}_{X}^{m_1 \cap m_2}$  with I(m) max.) can be built by commensurate merging in which the ordering of focal elements is an extension of partial ordering induced by inclusion (i.e.  $A_i \subset A_j \to A_i < A_j$ ).

#### But . . .

... Ranking focal el. with respect to inclusion is neither sufficient nor necessary to find *m* with maximal cardinality

## Interest

### **Practical**

Give some first "general" guidelines to combine marginal belief functions to get a merged bba having a maximized expected cardinality.

### **Theoretical**

If marginal belief functions are possibility distributions, using the (complete) order induced by inclusion comes down to apply the well-known minimum rule ( $m = \pi_{\min} = \min(\pi_1, \pi_2)$ )  $\Rightarrow$  coherence of the rule with possibility theory.



# Refining by pl- or q-ordering

Multiple merged bba m having maximal cardinality  $\Rightarrow$  discriminate/refining by using pl- or q- ordering.



- $ightharpoonup C_1 \sqsubseteq_{pl} C_2$ :  $C_2$  least pl-committed (more coherent with probabilistic interpretation, since  $\mathcal{P}_{C_1} \subset \mathcal{P}_{C_2}$ ), but commensurate merging giving  $C_2$  do not respect inclusion order.
- Arr  $C_2 \sqsubseteq_q C_1$ :  $C_1$  least q-committed (more coherent with TBM interpretation, possibility theory and proposed rule)

# Minimizing conflict

If  $m_1, m_2$  are not logically consistent, maximizing expected cardinality do not in general minimize conflict ( $m \in \mathcal{M}_{\chi}^{m_1 \cap m_2}$  s.t.  $m(\emptyset)$  is minimal). To min. conflict, Cattaneo (2003) proposes to find m that maximizes:

$$F(m) = m(\emptyset)f(0) + (1 - m(\emptyset)) \sum_{A \neq \emptyset} m(A)log_2(A)$$

where f(0) penalizes appearance of conflict. Similar idea can be used with expected cardinality, but then previous results no longer hold.



# Least-commitment and weight functions

(Denoeux, 2007) proposes a cautious rule based on an ordering (*w*-ord.) induced by canonical decompostion of bba (Smets, 1995).

### advantages

- Uniqueness of the solution
- Operationally very convenient
- Associative and commutative

#### drawbacks

- Restriction of possible joint bbas to a subset of  $\mathcal{M}_X^{m_1 \cap m_2}$
- Not coherent with minimum of possibility theory
- Difficult to compare with notions using s-ordering



# Conclusions/Perspectives

#### Conclusions

We studied cautious merging consisting in maximizing expected cardinality:

- First general and practical guidelines using commensurate bbas and inclusion ordering between focal el. to perform the merging
- Coherent with notion of cautiousness in possibility theory
- Compete with other propositions

### Perspectives

- Add constraints/guidelines to have sufficient conditions to reach maximized exp. card. (increase efficiency)
- Pursue the comparison between maximization of exp. card. and other notions of least-commitment
- Check for associativity/commutativity in the general case

