Cautious conjunctive merging of belief functions

Sébastien Destercke ${ }^{1,2}$, Didier Dubois ${ }^{2}$ and Eric Chojnacki ${ }^{1}$

${ }^{1}$ Institute of radioprotection and nuclear safety, Cadarache, France
${ }^{2}$ Toulouse institute of computer science, University Paul-Sabatier

ECSQARU 2007

Problem statement

Merging multiple belief functions

- Information from multiple sources modeled by belief functions
- If possible, merge conjunctively into a single belief function:
- If sources can be judged independent \Rightarrow use "Dempster's rule"
- If independence assumption unrealistic \Rightarrow cautious merging rule is one solution

Principle of cautious conjunctive merging

Keep as much information as possible (conjunctive) from each source while adding as few additional assumptions as possible (cautious).

Belief functions formalism

Basic belief assignment (bba)

- X finite space with elements $x_{1}, \ldots, x_{|X|}$
- bba: function $m: 2^{|X|} \rightarrow[0,1]$ s.t. $m(\emptyset)=0$ and $\sum_{A \subseteq X} m(A)=1$
- a set A with positive mass $m(A)>0$ is a focal element

Three measures: Belief, Plausibility, Commonality

- Belief: $\operatorname{bel}(E)=\sum_{A \subseteq E} m(A)$
- Plausibility: $p l(E)=\sum_{A \cap E \neq \emptyset} m(A)=1-\operatorname{bel}\left(A^{c}\right)$
- Commonality: $q(E)=\sum_{E \subseteq A} m(A)$

Belief function as a probability family
bba m induces $\mathcal{P}_{m}=\{P \mid \forall A \subset X, \operatorname{Bel}(A) \leq P(A) \leq P I(A)\}$

Two special kinds of bbas

Possibility distributions

- Mapping $\pi: X \rightarrow[0,1]$ and $\exists x \in X$ s.t. $\pi(x)=1$
- Possibility measure:
$\Pi(A)=\sup _{x \in A} \pi(x)$
- Necessity measure:

$$
N(A)=1-\Pi\left(A^{C}\right)
$$

- Equivalent to random set with nested focal elements
- $\Pi(A)=P l(A)$ and $N(A)=\operatorname{Bel}(A)$

Generalized p-boxes

- Two comonotone funct. \underline{F}, \bar{F} on X inducing a weak order R : $\overline{\bar{E}}\left(x_{i}\right) \leq \overline{\bar{E}}\left(x_{j}\right) \rightarrow x_{i} \leq_{R} x_{j}$
- $\exists \bar{x}$ s.t. $\bar{F}(\bar{x})=1, \underline{x}$ s.t. $\underline{F}(\underline{x})=0$
- $\underline{F}(x)=\operatorname{Bel}\left(\left\{x_{i} \leq_{R} x\right\}\right), \bar{F}(x)=\operatorname{Pl}\left(\left\{x_{i} \leq_{R} x\right\}\right)$
- $A_{i}=\left\{x_{\text {inf }}^{i}, \ldots, x_{\text {sup }}^{i}\right\}_{\leq_{R}}$ and $A_{j}=\left\{x_{\text {inf }}^{j}, \ldots, x_{\text {sup }}^{j}\right\}_{\leq_{R}}$ two distinct focal sets of a bba m. Then, m is a gen p-box iff $\left(x_{\text {inf }}^{i} \leq_{R} x_{\text {inf }}^{j}\right.$ and $\left.x_{\text {sup }}^{i} \leq_{R} x_{\text {sup }}^{j}\right)$ or ($x_{\text {inf }}^{i} \geq_{R} x_{\text {inf }}^{j}$ and $\left.x_{\text {sup }}^{i} \geq_{R} x_{\text {sup }}^{j}\right) \forall A_{i}, A_{j} \Rightarrow$ focal sets are "shifted" with respect to R

Compare informative contents of bbas

Three usual information orderings of bbas
$m_{1} \sqsubseteq_{x} m_{2}: m_{1}$ more x-committed than m_{2}

- pl-ordering: if $p l_{1}(A) \leq p l_{2}(A) \forall A \subseteq X$, we note $m_{1} \sqsubseteq_{p l} m_{2}$ $m_{1} \sqsubseteq_{p l} m_{2} \Leftrightarrow \mathcal{P}_{m_{1}} \subseteq \mathcal{P}_{m_{2}}$
- q-ordering: if $q_{1}(A) \leq q_{2}(A) \forall A \subseteq X$, we note $m_{1} \sqsubseteq_{q} m_{2}$
- s-ordering: if m_{1} is a specialization of m_{2}, we note $m_{1} \sqsubseteq_{s} m_{2}$ If m_{1}, m_{2} are weight vectors, then bba m_{1} is a specialization of bba m_{2} if \exists a stochastic matrix S s.t.
- $m_{1}=S \cdot m_{2}$

■ $S_{i j}>0 \Rightarrow A_{i} \subseteq B_{j}$

- $m_{2}(A)$ "flow downs" to subsets of A in m_{1}
$m_{1} \sqsubseteq_{s} m_{2}$ imply both $m_{1} \sqsubseteq_{p l} m_{2}, m_{1} \sqsubseteq_{q} m_{2}$ (but not the reverse)

Principles

Given m_{1}, m_{2} and their sets of focal elements $\mathcal{F}_{1}, \mathcal{F}_{2}$, the result of conjunctively merging m_{1}, m_{2} is a bba m obtained in 2 steps:

1. Define a joint bba m_{12} s.t. $m_{1}(A)=\sum_{B \in \mathcal{F}_{2}} m_{12}(A, B) \forall A$ and likewise for m_{2} (Marginal preservation)
2. $m_{12}(A, B)$ is allocated to, and only to $A \cap B$ (Conjunctive allocation)
$\mathcal{M}_{X}^{m_{1} \cap m_{2}}$: set of conjunctively merged bbas m. Every such bba is a specialization of m_{1} and m_{2}.

3 situations for $\mathcal{M}_{X}^{m_{1} \cap m_{2}}$

- Either $\forall A \in \mathcal{F}_{1}, B \in \mathcal{F}_{2}, A \cap B \neq \emptyset . m_{1}, m_{2}$ are said to be logically consistent $\Rightarrow \mathcal{M}_{X}^{m_{1} \cap m_{2}}$ Contains only normalized bbas ($m(\emptyset)=0$)
- either $\exists A, B A \cap B=\emptyset$ and \exists merged bba m s.t. $m(\emptyset)=0$ $\left(\mathcal{P}_{m_{1}} \cap \mathcal{P}_{m_{2}} \neq \emptyset\right) . m_{1}, m_{2}$ are said to be non-conflicting \Rightarrow $\mathcal{M}_{X}^{m_{1} \cap m_{2}}$ contains both normalized and subnormalized bbas.
- or there is no merged bba m s.t. $m(\emptyset)=0\left(\mathcal{P}_{m_{1}} \cap \mathcal{P}_{m_{2}}=\emptyset\right)$. m_{1}, m_{2} are said to be conflicting $\Rightarrow \mathcal{M}_{X}^{m_{1} \cap m_{2}}$ contains only subnormalized bbas

Merging with commensurate bbas

Principles

- order focal elements $\mathcal{F}_{1}, \mathcal{F}_{2}$ of m_{1}, m_{2}
- bbas $\left(\mathcal{F}_{1}, m_{1}\right)$ and $\left(\mathcal{F}_{2}, m_{2}\right)$ form two partitions of the unit interval
- take the coarsest common partition refining these two ones, then take conjunctive allocation for each element of this partition.
- result $\in \mathcal{M}_{x}^{m_{1} \cap m_{2}}$ depend of chosen ordering of focal elements

Illustration

Merging with equi-commensurate bbas

Principle

Take a refinement such that all weights are equal

Illustration

m^{\prime}	R_{1}	R_{2}		
0.5	A_{1}	B_{1}		5 lines with $m=0.1$
0.1	A_{2}	B_{1}	"Equi-comm."	
0.2	A_{2}	B_{2}	\rightarrow	2 lines with $m=0.1$
0.1	A_{3}	B_{3}		
0.1	A_{3}	B_{4}		

Result

With weights small enough and proper re-ordering of elements, we can get as close as we want to any bba $\in \mathcal{M}_{X}^{m_{1} \cap m_{2}}$

Basic principles

Problem

Find a merging rule (Λ) resulting in a bba $m \in \mathcal{M}_{X}^{m_{1} \cap m_{2}}$ that is "least"-committed, here in the sense of maximized expected cardinality.

Basic requirements

- \wedge should be idempotent: $\wedge(m, m)=m$
- If m_{2} is a specialization of m_{1}, then $\wedge\left(m_{1}, m_{2}\right)=m_{2}$
\Rightarrow Concern special cases and do not provide general guidelines
Idea
Find the proper ordering of (equi-)commensurate bbas that maximizes expected cardinality.

Main result

A merged bba m having maximal cardinality ($m \in \mathcal{M}_{X}^{m_{1} \cap m_{2}}$ with $I(m)$ max.) can be built by commensurate merging in which the ordering of focal elements is an extension of partial ordering induced by inclusion (i.e. $A_{i} \subset A_{j} \rightarrow A_{i}<A_{j}$).

But...

... Ranking focal el. with respect to inclusion is neither sufficient nor necessary to find m with maximal cardinality

Interest

Practical

Give some first "general" guidelines to combine marginal belief functions to get a merged bba having a maximized expected cardinality.

Theoretical

If marginal belief functions are possibility distributions, using the (complete) order induced by inclusion comes down to apply the well-known minimum rule $\left(m=\pi_{\text {min }}=\min \left(\pi_{1}, \pi_{2}\right)\right) \Rightarrow$ coherence of the rule with possibility theory.

Refining by pl- or q-ordering

Multiple merged bba m having maximal cardinality \Rightarrow discriminate/refining by using pl- or q - ordering.

$\begin{array}{cc} \pi_{1}=m_{1} & \\ \left\{x_{1}, x_{2}, x_{3}\right\} & 0.5 \\ \left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right\} & 0.5 \end{array}$			$C_{1}=\pi_{\text {min }}\left(I\left(C_{1}\right)=2\right)$	
		$\left\{x_{3}\right\}$	0.5	
		$\left\{x_{2}, x_{3}, x_{4}\right\}$	0.5	
$\pi_{2}=m_{2}$			$C_{2}\left(I\left(C_{2}\right)=2\right)$	
$\left\{x_{3}, x_{4}, x_{5}\right\}$	0.5		$\left\{x_{3}, x_{4}\right\}$	
$\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$	0.5		$\left\{x_{2}, x_{3}\right\}$	

- $C_{1} \sqsubset_{p l} C_{2}: C_{2}$ least pl-committed (more coherent with probabilistic interpretation, since $\mathcal{P}_{c_{1}} \subset \mathcal{P}_{c_{2}}$), but commensurate merging giving C_{2} do not respect inclusion order.
- $C_{2} \sqsubset_{q} C_{1}: C_{1}$ least q-committed (more coherent with TBM interpretation, possibility theory and proposed rule)

Minimizing conflict

If m_{1}, m_{2} are not logically consistent, maximizing expected cardinality do not in general minimize conflict ($m \in \mathcal{M}_{x}^{m_{1} \cap m_{2}}$ s.t. $m(\emptyset)$ is minimal). To min. conflict, Cattaneo (2003) proposes to find m that maximizes:

$$
F(m)=m(\emptyset) f(0)+(1-m(\emptyset)) \sum_{A \neq \emptyset} m(A) \log _{2}(A)
$$

where $f(0)$ penalizes appearance of conflict. Similar idea can be used with expected cardinality, but then previous results no longer hold.

Least-commitment and weight functions

(Denoeux, 2007) proposes a cautious rule based on an ordering (w-ord.) induced by canonical decompostion of bba (Smets, 1995). advantages

- Uniqueness of the solution
- Operationally very convenient
- Associative and commutative
drawbacks
- Restriction of possible joint bbas to a subset of $\mathcal{M}_{x}^{m_{1} \cap m_{2}}$
- Not coherent with minimum of possibility theory
- Difficult to compare with notions using s-ordering

Conclusions/Perspectives

Conclusions

We studied cautious merging consisting in maximizing expected cardinality:

- First general and practical guidelines using commensurate bbas and inclusion ordering between focal el. to perform the merging
- Coherent with notion of cautiousness in possibility theory
- Compete with other propositions

Perspectives

- Add constraints/guidelines to have sufficient conditions to reach maximized exp. card. (increase efficiency)
- Pursue the comparison between maximization of exp. card. and other notions of least-commitment
- Check for associativity/commutativity in the general case

