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Introduction

Family P of probabilities can be hard to represent (even by lower
(P(A)) and upper (P(A)) probabilities). Special cases easier to handle
exist :

Probability intervals
Random sets
(Generalized) P-boxes
Possibility distributions
Neumaier’s Clouds

Comparing them in terms of their relative expressive power.
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Probability intervals

Definition

Given space X = {x1, . . . , xn}, probability intervals = imprecise assignments
[li , ui ] over elementary elements xi . A collection of intervals
L = {[li , ui ], i = 1, . . . , n} induces the family

PL = {P|li ≤ p(xi) ≤ ui ∀xi ∈ X}

Properties (De Campos et al.)

PL is non-empty if
∑n

i=1 li ≤ 1 ≤
∑n

i=1 ui

Bounds of PL are reachable if
∑

j 6=i lj + ui ≤ 1 and
∑

j 6=i uj + li ≥ 1∀ i
Lower/upper probabilities on events are given by
P(A) = max(

∑
xi∈A li , 1 −

∑
xi /∈A ui) ; P(A) = min(

∑
xi∈A ui , 1 −

∑
xi /∈A li)

P is a 2-monotone Choquet capacity
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Probability intervals vs. Random Sets

Random sets cannot capture probability families induced by probability
intervals : only approximations are possible.

Existing results

Inner approximation: Lemmer and Kyburg explore the problem of
finding a random set Bel s.t. Bel(xi) = li , Pl(xi) = ui (bounds coincide on
singletons and PBel ⊂ PL). They show that it is possible if L is reachable,
non-empty and if

n∑

i=1

li +

n∑

i=1

ui ≥ 2

Outer approximation: given L, Denoeux extensively explores the
problem of finding the most "precise" random set Bel s.t. PL ⊂ PBel .
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Probability boxes and generalized p-boxes

P-boxes

A Cumulative distribution is a monotone function F from the reals to [0, 1],
with F (+∞) = 1, F (−∞) = 0. In general, it is of the form F (x)=Pr((−∞,x ]) for a
probability measure Pr .
A P-box is a pair of cumulative distributions F , F with F (x) ≤ F (x) defining
the family of probability functions with cumulative distributions F such that
F ≤ F ≤ F

Generalized P-box

A generalized cumulative distribution is a monotone function F R from a
weakly ordered space (X ,≤R) to [0, 1] with F R(x) = 1 (x = top of X ). In
general, it is of the form F R(x) = P({xi ∈ X |xi ≤R x}).

A generalized P-box is a pair of ≤R-comonotone functions F R , F R from X
to [0, 1], with F R(x) ≤ F R(x) and ∃ x s.t. F R(x) = 1,∃ x s.t. F R(x) = 0.

Associated probability family: Pp−box = {P|F R(x) ≤ F R(x) ≤ F R(x)}.
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Generalized P-boxes and confidence sets

(Generalized) p-boxes can be viewed as upper and lower uncertainty
bounds on nested confidence sets induced by the weak order R (e.g. I.
Kozine, L. Utkin (I.J. of Gen. Syst., 2005) ).

Finite case
Let Ai = {x ∈ X |x ≤R xi} with xi ≤R xj iff i < j
A1 ⊂ A2 ⊂ . . . ⊂ An

Gen. P-box can be encoded by following constraints :

αi ≤ P(Ai) ≤ βi i = 1, . . . , n
α1 ≤ α2 ≤ . . . ≤ αn ≤ 1
β1 ≤ β2 ≤ . . . ≤ βn ≤ 1
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From Prob. Intervals to Gen. p-boxes and back

Prob. intervals → Gen. p-boxes

Given ordering R on X s.t. xi ≤R xj iff i < j and intervals L, build the Gen.
p-box

F R(xi) = P(Ai) = max(
∑

xi∈Ai
lj , 1 −

∑
xi /∈Ai

uj)

F R(xi) = P(Ai) = min(
∑

xi∈Ai
ui , 1 −

∑
xi /∈Ai

li)

Gen. p-boxes → Prob. Intervals

If we have a gen. p-box [F , F ] defined on nested sets Ai , corresponding
probability intervals are given by

P(xi) = li = max(0, P(Ai) − P(Ai−1))

P(xi) = ui = P(Ai) − P(Ai−1)
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Prob. Intervals and Gen. p-boxes : relations

Theorem
A probability family induced by a generalized p-box is representable by
a random set

Given an initial set L of probability intervals, or an initial p-box [F R , F R] over a
space X , we can consider the respective transformations

Prob. Intervals L → p-box [F ′
R(x), F

′

R(x)] → Prob. Intervals L′′

p-box [F R(x), F R(x)] → Prob. Intervals L′ → p-box [F ′′
R(x), F

′′

R(x)]

we have that PL ⊆ PL′′ and P[F R ,F R ] ⊆ P
[F ′′

R ,F ′′

R ]
.

⇒ Some information is lost during the transformation, due to the fact that
constraints are defined on different events (i.e. singletons and nested sets)
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Possibility distributions

Possibility formalism

Definition
Mapping π : X → [0, 1] and ∃x ∈ X s.t. π(x) = 1
Possibility measure: Π(A) = supx∈A π(x) (maxitive)
Necessity measure: N(A) = 1 − Π(Ac)

Possibility and random sets
Possibility distribution = random set with nested realizations

Probability family associated to possibility distribution

Pπ = {P|∀A ⊆ X measurable, N(A) ≤ P(A) ≤ Π(A)}
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Possibility distributions

Generalized cumulative distribution = possibility
distribution

An upper cumulative distribution F bounding a probability family is
such that maxx∈A F (x) ≥ Pr(A) (maxitivity), and can thus be
interpreted as a possibility distribution π

Conversely, up to a re-ordering, any possibility distribution π can be
assimilated to an upper (generalized) cumulative distribution F .

x1 x2 x3 x4

0.2
0.4
0.6
0.8
1.0

π

x4 x3 x1 x2

0.2
0.4
0.6
0.8
1.0

F
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Possibility distributions

P-boxes as pairs of possibility distributions

If F (x) is a lower generalized cumulative distribution, we have
minx∈Ac F∗(x) ≤ Pr(A) → maxx∈Ac (1 − F (x)) ≥ Pr(Ac).

Take π = F (x), π = 1 − F (x), we have Pp−box = Pπ ∩ Pπ

1

F (x) F (x)

ππ

min(π, π)

(Pp−box = Pπ ∩ Pπ) ⊃ (Pmin(π,π))
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Possibility distributions

From Prob. Intervals to possibility distributions

Precise probability distribution

Given a precise probability p on X , Dubois and Prade (1982) proposed to consider the complete
pre-order

p(x1) < p(x2) < . . . < p(xj ) < . . . < p(xn)

and the transformation into the possibility distribution π given by

π(xi ) =
i

X

j=1

p(xj )

Imprecise probability intervals

When only probability intervals L are available, the order

p(xi ) ≤ p(xj ) ↔ ui ≤ lj

is (generally) no longer complete (p(xi ), p(xj ) are incomparable if [li , ui ], [lj , uj ] intersect) ⇒ need
to define a method to build π s.t. PL ⊂ Pπ
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Possibility distributions

From Prob. Intervals to possibility distributions

Masson and Denoeux solution

Let Cl be a complete order refining the partial order on intervals, and C the set of possible
refinement. Masson and Denoeux propose to use the transformation used in the precise case on
orders Cl and to take the possibility distribution covering all these transformations

1 For each order Cl ∈ C and each element xi , solve

π(xi )
Cl = max

p(x1),...,p(xn)

X

σ
−1
l (j)≤σ

−1
l (i)

p(xj )

under the constraints

8

<

:

P

k=1,...,n p(xk ) = 1 (p is a prob. distribution)
lk ≤ pk ≤ uk (p is in PL)

p(xσl (1)) ≤ p(xσl (2)) ≤ . . . ≤ p(xσl (n)) (order induced by refinement Cl )

where σl is the permutation of p(xk ) associated with the linear extension Cl

2 Take the distribution dominating all distributions π(xi )
Cl s.t.

π(xi ) = max
Cl∈C

π(xi )
Cl ∀i (π(xi ) covers all π(xi )

Cl )
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Possibility distributions

From Prob. Intervals to possibility distributions

Solution using relation with p-boxes

1 Choose a particular order R on X
2 Build The upper generalized cumulative distribution F R induced by L:

F R(xi) = P(Ai) = min(
∑

xi∈Ai

ui , 1 −
∑

xi /∈Ai

li)

3 Let π(xi) = F (xi).

Both methods provide a guaranteed outer approximation (i.e.
PL ⊂ Pπ)
In some cases, using generalized upper cumulative distribution
give a dist. π more precise than the one of Masson/Denoeux
method.
Needs a rationale to select the proper weak order R.
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Clouds

Neumaier’s clouds : Introduction

Definition
A cloud can be viewed as a pair of distributions [δ(x) ≤ π(x)] from X to
[0, 1] (≡ to an interval-valued fuzzy set)

Associated probability family
Pcloud = {P|P({x |δ(x)≥α}) ≤ 1 − α ≤ P({x |π(x)>α})

Link with possibility distributions
If we consider the possibility distributions 1 − δ = π and π, we

have Pcloud = Pπ ∩ P1−δ=π (Dubois & Prade 2005)

πx

δx

α

1
πx

1 − δx = πx

1
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Clouds

Discrete clouds : formalism

Discrete clouds as collection of sets
Discrete clouds can be viewed as two collections of confidence sets

∅ = A0 ⊂ A1 ⊆ A2 ⊆ . . . ⊆ An ⊂ An+1 = X (πx)

∅ = B0 ⊂ B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊂ Bn+1 = X (δx)

Bi ⊆ Ai (δx ≤ πx)

with constraints
P(Bi) ≤ 1 − αi ≤ P(Ai)

1 = α0 > α1 > α2 > . . . > αn > αn+1 = 0
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Clouds

Characterizing clouds

A cloud is said comonotonic if distributions δ, π are comonotone
A cloud is said non-comonotonic if distributions δ, π are not

comonotone
A cloud is said thin if distributions δ, π are s.t. δ = π

A cloud is said fuzzy if distributions δ, π are s.t. δ = 0 (a fuzzy cloud is a
possibility distribution).

Ai

Bj

Ai

Bj

Ai * Bj and Ai + Bj

Non-comonotonic cloud

δ = π

Thin cloud

δ = 0

Fuzzy cloud

Ai ⊆ Bj or Ai ⊇ Bj

Comonotonic cloud
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Clouds

Relating clouds to other uncertainty representations

Comonotonic clouds and generalized p-boxes are equivalent
representations (and both are special cases of random sets).
Thin clouds define empty probability family on finite sets, infinite on
infinite sets.
On finite sets some clouds contain a single probability distribution
Non-comonotonic clouds are not even 2-monotone capacities.

Transforming precise probability into cloud

Let p be a precise probability with p1 < p2 < . . . pj < . . . < pn, and π the poss.
dist. built by Dubois and Prade method: πi =

∑i
j=1 pj . If we now reverse the

order, we can build another distribution

πi=
Pn

j=i pj .

Let δ = 1 − π then, (δ, π) is the (almost thin) cloud containing p and only p.
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Clouds

From Prob. Intervals to Clouds

Extending Masson and Denoeux solution

Again, we consider the set of complete order Cl refining the partial order on intervals L. We build
distribution π with Masson and Denoeux method, and δ in the following way

1 For each order Cl ∈ C and each element xi , solve

π(xi )
Cl = max

p1,...,pn

X

σ
−1
l (i)≤σ

−1
l (j)

pj

= 1 − min
p1,...,pn

X

σ
−1
l (j)<σ

−1
l (i)

pj = 1 − δ(xi )
Cl

with the same constraints as for π

2 Take the distribution dominating all distributions π
Cl
δi

π(xi ) = 1 − δ(xi ) = max
Cl∈C

π(xi )
Cl = 1 − min

Cl∈C
δ(xi )

Cl ∀i (1)

The resulting cloud (δ, π) is s.t. PL ⊂ Pδ,π , and is more precise than π alone.
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Clouds

From Prob. Intervals to Clouds

Solution using relation with p-boxes

1 Choose a particular order R on X
2 Build The generalized p-box [F R , F R ] induced by L corresponding to this

order
3 Take π(xi) = F R(xi) and δ(xi) = F R(xi−1) (δ(x0) = 0). The resulting

cloud (δ, π) is s.t. PL ⊂ Pδ,π, and is more precise than taking π = F
alone.

Comparison

Both methods provide a guaranteed outer approximation (i.e. PL ⊂ Pδ,π)
Again, using the method based on generalized p-boxes may lead to
more precise results than the extension of Masson and Denoeux
method.
Needs some rationale to choose the ordering R.
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Clouds

Conclusions and perspective

Conclusions

We have proposed methods to transform probability intervals into
p-boxes, possibility distributions or clouds that are guaranteed
outer approximations
Since probability intervals can be seen as probabilistic constraints
on singletons, and the other models as constraints on nested sets,
transforming one into the other either adds (inner approximation)
or loses (outer approximation) information.

Perspectives

Find or show that already proposed transformations lose (or add)
a minimal amount of information (given a specific measure of
information).
Extend these results to the continuous case (probability density
encompassed between a lower and upper density).
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Clouds

Imprecise probability representations: where is what?

Imprecise probabilities

Lower/upper prob.

2-monotone capacities

Random sets (∞-monot)

Comonotonic clouds

Generalized p-boxes

P-boxes

Probabilities

Probability Intervals

Non-comonot. clouds

Possibilities
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Clouds

General perspectives and open questions

Study the propagation, fusion, conditioning of practical uncertainty
representations (are they easy to compute, do they preserve the
representation ?).
Extend results to characterize lower/upper previsions of clouds
and generalized p-boxes (in progress...)
Explore the possible use of Gen. p-boxes, clouds (i.e. pairs of
possibility distributions), probability intervals in the elicitation and
linguistic assessments of imprecise probabilities.
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