Relating practical representations of imprecise probabilities

S. Destercke ¹ D. Dubois ² and E. Chojnacki ¹

¹Institute of radioprotection and nuclear safety Cadarache, France

²Toulouse institute of computer science University Paul-Sabatier

ISIPTA 2007

Introducing Didier

Position

CNRS Research advisor, IRIT, Toulouse

Some interests and hobbies

- Uncertainty treatment, applied mathematics, artificial intelligence, qualitative and quantitative possibility theory, . . .
- Singing
- Proposing ideas to his Phd students
- ...

Collaborations

Quite a few!

Introducing Eric

Position

Research engineer, IRSN, Cadarache, France

(Research) interests

Applying imprecise probabilities, Dempster-Shafer theory, fuzzy calculus to

- Radiological protection
- Environmental issues
- Nuclear safety

Introducing me (again)

Position

Phd student at the Institute of radiological protection and nuclear safety, under the supervision of Didier Dubois (IRIT) and Eric Chojnacki (IRSN)

Main interests

Treatment of information in uncertainty analysis, using imprecise models

- Information modeling
- Information fusion
- (In)dependence concepts
- Propagation of information

Introducing the center

21 km², 40 km from any middle-sized city.

Introducing the boars

Outline

Family \mathcal{P} of probabilities can be hard to represent (even by lower $(\underline{P}(A))$ and upper $(\overline{P}(A))$ probabilities). Special cases easier to handle exist :

- Random sets
- Possibility distributions
- (Generalized) P-boxes
- Neumaier's Clouds
- Probability intervals

Possibility formalism

Definition

- ▶ Mapping $\pi: X \to [0,1]$ and $\exists x \in X$ s.t. $\pi(x) = 1$
- Possibility measure: $\Pi(A) = \sup_{x \in A} \pi(x)$ (maxitive)
- Necessity measure: $N(A) = 1 \Pi(A^c)$

Possibility and random sets

Possibility distribution = random set with nested realizations

Probability family associated to possibility distribution

$$\mathcal{P}_{\pi} = \{P | \forall A \subseteq X \text{ measurable, } N(A) \leq P(A) \leq \Pi(A)\}$$

Generalized cumulative distribution

(Generalized) Cumulative Distribution

A Cumulative distribution is a monotone function F from a weakly ordered space X to [0,1], with $F(\overline{X}) = 1$ ($\overline{X} = \text{top of } X$).

Usual dist : X = reals

 $F(x)=Pr((-\infty,x])$ Order = Natural ordering of numbers

ightharpoonup Gen. dist : X = arbitrary space

 $F(x)=Pr(\{x_i \in X | x_i \leq_R x\})$ Order R = any weak order over X

Link with possibility distributions

an **upper** cumulative distribution \overline{F} bounding a probability family is such that $\max_{x \in A} \overline{F}(x) \ge \Pr(A)$ (maxitivity), and can thus be interpreted as a possibility distribution π

Generalized cumulative distribution

Up to a re-ordering, any possibility distribution π can be assimilated to an upper (generalized) cumulative distribution \overline{F} .

Generalized P-boxes

(Generalized) P-box

A (generalized) P-box is a pair of comonotone functions $\underline{F}, \overline{F}$ from X to [0,1], with $\underline{F}(x) \leq \overline{F}(x)$ and $\exists \ \overline{x} \text{ s.t. } \overline{F}(\overline{x}) = 1, \exists \ x \text{ s.t. } F(x) = 0$

Associated probability family

 $ightharpoonup \mathcal{P}_{p-box} = \{P | \underline{F}(x) \le P(\{x_i \in X | x_i \le_R x\}) \le \overline{F}(x)\}$ with R a weak order on X

Generalized P-boxes: constraint view

(Generalized) p-boxes can be viewed as upper and lower uncertainty bounds on nested confidence sets induced by the weak order *R* (A similar view for usual p-boxes is adopted by I. Kozine, L. Utkin (I.J. of Gen. Syst., 2005))

- Let $A_i = \{x \in X | x \leq_R x_i\}$ with $x_i \leq_R x_i$ iff i < j
- $A_1 \subset A_2 \subset \ldots \subset A_n$
- Gen. P-box can be encoded by following constraints:

$$\alpha_i \leq P(A_i) \leq \beta_i \qquad i = 1, \dots, n$$

$$\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_n \leq 1$$

$$\beta_1 \leq \beta_2 \leq \dots \leq \beta_n \leq 1$$

Illustration

Link with possibility distributions

If $F_*(x)$ is a lower generalized cumulative distribution, we have $\min_{x \in A^c} F_*(x) \leq \Pr(A) \to \max_{x \in A^c} (1 - F_*(x)) \geq \Pr(A^c)$.

► Take $\pi = \overline{F}(x)$, $\overline{\pi} = 1 - \underline{F}(x)$, we have $\mathcal{P}_{p-box} = \mathcal{P}_{\pi} \cap \mathcal{P}_{\overline{\pi}}$

$$(\mathcal{P}_{\mathsf{p-box}} = \mathcal{P}_{\pi} \cap \mathcal{P}_{\overline{\pi}}) \supset (\mathcal{P}_{\mathsf{min}(\pi,\overline{\pi})})$$

Generalized P-box: a surprising example

A funny example

This is not an usual p-box, but it is a generalized p-box!

- m : mode of the two distributions
- R: $x \leq_R y \Leftrightarrow |x m| \leq |y m|$

Neumaier's clouds: Introduction

Definition

A cloud can be viewed as a pair of distributions $[\delta(x) \le \pi(x)]$ from X to [0,1] (\equiv to an interval-valued fuzzy set)

Associated probability family

Link with possibility distributions

If we consider the possibility distributions $1 - \delta = \overline{\pi}$ and π , we have $\mathcal{P}_{cloud} = \mathcal{P}_{\pi} \cap \mathcal{P}_{1-\delta=\overline{\pi}}$ (Dubois & Prade 2005)

Discrete clouds: formalism

Discrete clouds as collection of sets

Discrete clouds can be viewed as two collections of confidence sets

•
$$\emptyset = A_0 \subset A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n \subset A_{n+1} = X \quad (\pi_x)$$

•
$$\emptyset = B_0 \subset B_1 \subseteq B_2 \subseteq \ldots \subseteq B_n \subset B_{n+1} = X \quad (\delta_x)$$

•
$$B_i \subseteq A_i \quad (\delta_X \le \pi_X)$$

with constraints

•
$$P(B_i) \le 1 - \alpha_i \le P(A_i)$$

•
$$1 = \alpha_0 > \alpha_1 > \alpha_2 > \ldots > \alpha_n > \alpha_{n+1} = 0$$

Characterizing clouds

- ightharpoonup A cloud is said comonotonic if distributions δ,π are comonotone
- ightharpoonup A cloud is said non-comonotonic if distributions δ,π are **not** comonotone

Comonotonic cloud

Non-comonotonic cloud

Main results on clouds and gen. p-boxes

Comonotonic clouds

- Gen. p-boxes and comonotonic clouds are equivalent representations
- Comonotonic clouds induce ∞ -monotone capacities, and are thus a special case of random sets.

Non-comonotonic clouds

- Non-comonotonic clouds are not even 2-monotone capacities
- Neumaier's outer approximation : $\max(N_{\pi}(A), N_{1-\delta}(A)) \leq P(A) \leq \min(\Pi_{\pi}(A), \Pi_{1-\delta}(A))$
- Random set inner approximation : $m(A_i \setminus B_{i-1}) = \alpha_{i-1} \alpha_i$ (exact when δ , π are comonotonic).

Relations with probability intervals

Probability intervals are imprecise probability assignments to elements in a finite set. They induce lower probabilities that are 2-monotone capacities.

Since clouds (Comonotonic or not) can be seen as imprecise probability assignments to confidence intervals, transforming one of the two representations into the other implies:

- Either losing information (i.e. by building an outer approximation of the original representation)
- Or adding information (i.e. by building an inner approximation of the original representation)

Defining a systematic transformation that loses (adds) a minimal amount of information is an open problem.

Imprecise probability representations: where is what?

Perspectives and open questions

- Study the propagation, fusion, conditioning of generalized p-boxes and clouds (are they easy to compute, do they preserve the representation?).
- Extend results to characterize lower/upper previsions of clouds and generalized p-boxes (in progress...)
- Explore the link that could exist between Gen. p-boxes, clouds (i.e. pairs of possibility distributions) and linguistic assessments of imprecise probabilities.