Représentation et synthèse de l'information incertaine

S. Destercke (1ère année)

IRSN/DPAM/SEMIC/LIMSI

Journée des thèses IRSN 2006

Tuteur IRSN: Eric Chojnacki (DPAM/SEMIC/LIMSI)

Directeur de thèse : Didier Dubois (IRIT, université Toulouse 3)

Thèse financée par l'IRSN

Contexte

Analyse d'incertitude répond à un besoin :

- de rigueur scientifique
- de crédibilité sociale

Nombreux domaines d'applications

- Radioprotection (GRNC), Sûreté nucléaire (BEMUSE,UMS)
- Environnement (Thèse cofinancée BRGM/IRIT/IRSN)

Retour d'Expérience (REX)

 La façon dont sont quantifiées/représentées les incertitudes sources a un impact majeur sur l'analyse d'incertitude

Ces incertitudes sources proviennent souvent d'opinions d'experts

Objectifs

Globaux

Modéliser le plus précisément possible l'ensemble des incertitudes sur les paramètres d'un modèle pour garantir la pertinence du résultat final.

1ère phase

- Etude des théories mathématiques permettant de représenter l'incertitude
- Traitement de l'information experte

2 types d'incertitudes

Incertitude = variabilité + imprécision

- variabilité : caractéristique naturelle d'un phénomène (e.g. temps de défaillance, taille, ...) → incertitude aléatoire
- imprécision : due à un manque d'information, de données (e.g. pression ou température en un point, ...) → incertitude épistémique

Traitement des opinions expertes

Opinions d'experts généralement traitées en 3 étapes

- 1. Représentation des opinions
- 2. Pondération des experts
- 3. Synthèse des opinions

Représentation usuelle

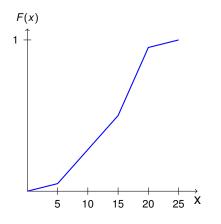
Usuellement

- Experts communiquent leurs connaissances (imprécises)
- Sélection d'une distribution de probabilité suivant le principe de maximum d'entropie

Inconvénients

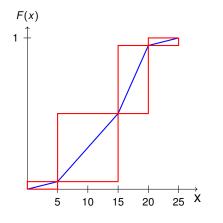
Utiliser le max. d'entropie revient à rajouter de l'information.

Comment y remédier ?


Considérer l'ensemble des distributions en utilisant, par exemple :

- Théorie des fonctions de croyance
- Théorie des possibilités

Exemple 1 : probabilité partiellement connue


Temps de lessivage d'un sol

- Expert fournit les valeurs suivantes pour les quantiles à 5%, 50%, 95% : 5, 15, 20
- Distribution par max. d'entropie

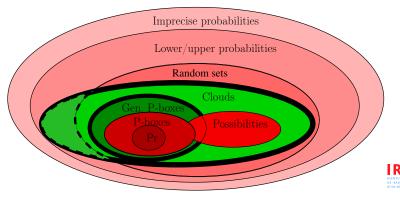
Exemple 1 : probabilité partiellement connue


Temps de lessivage d'un sol

- Expert fournit les valeurs suivantes pour les quantiles à 5%, 50%, 95% : 5, 15, 20
- Distribution par max. d'entropie
- Ensemble des distributions possibles

Exemple 2 : Valeur imprécisément connue

Intervalles de confiance

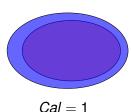

Expert donne intervalles de confiance suivants

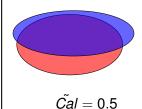
- **▶** 50% ∈ [10, 15]
- **▶** 95% ∈ [5, 20]
- **▶** 100% ∈ [0, 25]
- → Distribution de possibilité

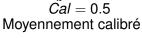
Bibliographie et développements théoriques issus du travail de thèse : synthèse, extension, et établissement de relations entre les théories de l'incertain

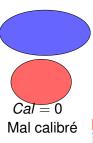
Pondération des experts

Principes de la pondération

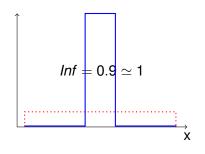

- Différencier les experts grâce à une évaluation objective
- Evaluation = Calibration + Informativité
 - Calibration : cohérence avec réalité connue (nécessité de variables témoins)
 - Informativité : précision de l'opinion.

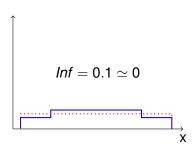



Notion de calibration


Connaissance expert Réalité connue

Cal = 1Bien calibré





Notion d'informativité

Connaissance expert Distribution non-informative

Expert Informatif

Expert non-informatif

Pondération → Bien étudiée pour les probabilités Extension aux autres théories de l'incertain dans le cadre de la thèse

Distributions non-informatives : p^i, π^i, m^i ; expertes : p^e, π^e, m^e ; témoins : p^t, π^t, m^t

Calibration Informativité

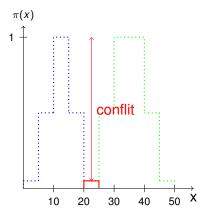
Existant	Nos propositions (exemples)	
Prob.	Poss.	Croy.
$\sum_{j} p_{j}^{e} ln(\frac{p_{j}^{e}}{p_{j}^{t}})$	$\frac{ \min(\pi^{\boldsymbol{e}}, \pi^t) }{ \pi^t }$	$rac{\mathit{IP}(\mathcal{P}_{\mathit{mt}} \cap \mathcal{P}_{\mathit{me}})}{\mathit{IP}(\mathcal{P}_{\mathit{mt}})}$
$\sum_{j} p_{j}^{e} ln(\frac{p_{j}^{e}}{p_{i}^{i}})$	$1-rac{ \pi^e }{ \pi^i }$	$1-rac{\mathit{IP}(\mathcal{P}_{\mathit{m^e}})}{\mathit{IP}(\mathcal{P}_{\mathit{m^i}})}$

 \mathcal{P}_{m^t} : famille de probabilités modélisée par la fonction de croyance m^t IP : mesure d'imprécision dérivée de l'inverse de Möbius

$$(m(E) = \sum_{A \subset E} -1^{|E-A|} \mu(A))$$

Méthodes de synthèse

But : prendre l'ensemble des opinions et les synthétiser de façon cohérente pour n'obtenir qu'une seule distribution.

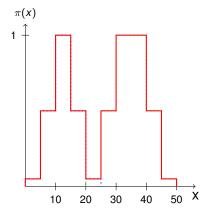

2 approches principales

- Conjonction : Intersection des opinions (→ On conserve les valeurs communes à toutes les opinions) .
 - Résultat très précis / peu fiable en cas de désaccord
- ▶ Disjonction : Union des opinions (→ On considère l'ensemble des valeurs des opinions)
 - Résultat très peu précis / très fiable

Synthèse : conjonction

Intervalles de confiance Intervalles à 50%, 95%, 100% :

- ► Expert 1 : [10, 15], [5, 20], [0, 25]
- Expert 2: [30, 40], [25, 45], [20, 50]
- → Conjonction (Intersection, connecteur logique ET)


$$\pi_{\cap} = \min(\pi_1, \pi_2)$$

→ Désaccord important!

Synthèse: disjonction

Intervalles de confiance Intervalles à 50%, 95%, 100% :

- ► Expert 1 : [10, 15], [5, 20], [0, 25]
- Expert 2: [30, 40], [25, 45], [20, 50]
- ightarrow Disjonction (Union, connecteur logique OU)

$$\pi_{\cup} = \max(\pi_1, \pi_2)$$

 \rightarrow Approche conservative

Autres méthodes de synthèse

- Moyennes pondérées
- Méthodes asymétriques
- Méthodes hiérarchiques,...

Travail en cours : construire méthode tirant profit de

- pondération
- conjonction
- disjonction

en utilisant la notion de sous-ens. maximaux cohérents.

Représentation et synthèse de l'information incertaine

Conclusions

Par rapport au méthodes probabilistes usuelles, les probabilités imprécises permettent plus de liberté :

- 1. dans la modélisation de la connaissance
- dans la pondération des experts (ou de sources d'information en général)
- 3. dans la manière de synthétiser les connaissances
- → Objectif: obtenir des résultats plus fiables / plus pertinents

Représentation et synthèse de l'information incertaine

Perspectives

- ► Utilisation des méthodes sur un Benchmark OCDE (BEMUSE) concernant des logiciels de sûreté en Th. accidentelle. → comparaison des résultats fournis par les instituts
- Proposer de nouvelles méthodes dans le cas probabiliste imprécis pour les problèmes suivants
 - Représentation/synthèse des résultats
 - Analyse de sensibilité
 - Prise en compte de dépendances entre les variables / les sources
 - Problème inverse

Représentation et synthèse de l'information incertaine publications

Journaux

"Some links between practical representations of imprecise probabilities" En préparation, à soumettre.

Conférences avec comité de lecture

- "A unified view of some representations of imprecise probabilities" Third International Conference on Soft Methods in Probabilities and Statistics (SMPS 2006), Bristol, UK
- "Aggregation of expert opinions and uncertainty theories" Rencontres Francophones sur la Logique Floue et ses Applications (LFA 2006), Toulouse
- "Notes on clouds" 28th Seminar on fuzzy sets, 2007, Linz, Austria (prevision)

MERCI!

questions?

