Fusion d'opinions d'experts et théories de l'incertain

S. Destercke^{1 2}, D. Dubois¹ et E. Chojnacki²

¹Institut de Recherche en Informatique de Toulouse University Paul-Sabatier

²Institut de Radioprotection et de sûreté nucléaire Cadarache, France

LFA 06

Traitement des opinions

- Représentation des opinions
- Pondération des opinions
- Fusion des opinions

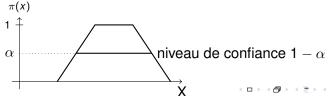
Théorie des possibilités

Distributions de possibilité

- Distribution $\pi: X \to [0, 1]$
- Deux mesures duales :

$$\Pi(A) = \sup_{x \in X} \pi(x) \quad ; \quad N(A) = 1 - \Pi(A^c)$$

• Forme des opinions : intervalles de confiance



Théorie des fonctions de croyances

Fonctions de croyance

- Distribution $m: 2^X \to [0,1]$ (m(E) > 0: E ens. focal)
- Deux mesures duales :

$$Bel(A) = \sum_{E,E \subset A} m(E)$$
 ; $Pl(A) = 1 - Bel(A^c)$

- Possibilités = fonction de croyance avec él. focaux emboîtés
- Forme des opinions : intervalles de confiance, percentiles imprécis, . . .

Théorie des probabilités imprécises

Familles convexes de probabilités

- Famille convexe P de probabilités
- Plusieurs réprésentations
 - Sommets du polyhèdre convexe
 - Ensembles de contraintes
 - Probabilités inférieures/supérieures

$$\underline{P}(A) = \inf_{P \in \mathcal{P}} P(A)$$
 ; $\overline{P}(A) = \sup_{P \in \mathcal{P}} P(A) = 1 - \underline{P}(A^c)$

• Distribution de possibilités π

$$\rightarrow$$
 $\mathcal{P}_{\pi} = \{P | N(A) \leq P(A) \leq \Pi(A) \, \forall A \in X\}$

Fonction de croyances m

$$\rightarrow$$
 $\mathcal{P}_{Bel} = \{P|Bel(A) \leq P(A) \leq Pl(A) \, \forall A \in X\}$

Principes Approche probabiliste Autres théories de l'incertain

Principes (Cooke, 91)

Poids = Informativité + Calibration

Principes

- Utilisation de variables témoins
- Favoriser experts précis et bien calibrés
- Pertinence : calcul basé sur observations
- Justesse : Bonne calibration = poids maximum
- Comparabilité des poids

Approche probabiliste

Entropie relative $I(r, p) = \sum_{i=1}^{|X|} r_i \cdot \ln(r_i/p_i)$ (p opinion experte)

Mesures

Informativité

u: distribution uniforme \rightarrow Informativité = I(p, u)

Calibration

r: distribution témoin \rightarrow Calibration : I(r, p)

Problème : confusion entre variabilité et imprécision

Mesure d'informativité

Inverse de Möbius

à partir d'une mesure inférieure $\mu(A)$ $(N(A), Bel(A), \underline{P}(A))$

$$m(E) = \sum_{A \subset E} -1^{|E-A|} \mu(A) E \subset X$$

avec
$$\sum_X m(E) = 1$$

Imprécision :
$$IP = \sum_X m(E)|E| \rightarrow \text{Informativité}$$
 : $Sp = \frac{|X| - IP}{|X|}$

Mesure de calibration

Connaissance déterministe (x = v*)

Utiliser les mesures supérieures $\pi(v*)$, PI(v*), $\overline{P}(v*)$

Connaissance imprécise $(x \in K(v*))$

Utiliser la notion d'inclusion \rightarrow soit une opinion experte correspondant à la représentation K_e , un indice d'inclusion possible :

$$IC = \frac{IP(K_e \cap K(v*))}{IP(K(v*))}$$

Utilisation des poids

Utilisation explicite

- Dans la méthode de fusion : moyenne pondérée
- Par affaiblissement (discounting) de l'opinion

Utilisation implicite

 Utilisation de l'ordre induit par les poids calculés entre les experts

- Conjonctif $(K_{e_1} * K_{e_2} \subseteq K_{e_1} \cap K_{e_2})$
- Disjonctif $(K_{e_1} * K_{e_2} \supseteq K_{e_1} \cup K_{e_2})$
- ullet Comptage (moyenne) ($K_{e_1}\cap K_{e_2}\supseteq K_{e_1}*K_{e_2}\supseteq K_{e_1}\cup K_{e_2}$)

- Conjonctif $(K_{e_1} * K_{e_2} \subseteq K_{e_1} \cap K_{e_2})$
 - Possibilités : $\pi_{\cap} = \top(\pi_1, \pi_2)$
 - Croyances : $m_{\cap}(A) = \sum_{E_1 \cap E_2 = A} m(E_1) m(E_2)$
 - Probabilités Imp. : $\mathcal{P}_{\cap} = \mathcal{P}_1 \cap \mathcal{P}_2$
- Disjonctif $(K_{e_1} * K_{e_2} \supseteq K_{e_1} \cup K_{e_2})$
- $\bullet \ \ \text{Comptage (moyenne)} \ (\textit{K}_{\textit{e}_1} \cap \textit{K}_{\textit{e}_2} \supseteq \textit{K}_{\textit{e}_1} * \textit{K}_{\textit{e}_2} \supseteq \textit{K}_{\textit{e}_1} \cup \textit{K}_{\textit{e}_2}) \\$

- Conjonctif $(K_{e_1} * K_{e_2} \subseteq K_{e_1} \cap K_{e_2})$
- Disjonctif $(K_{e_1} * K_{e_2} \supseteq K_{e_1} \cup K_{e_2})$
 - Possibilités : $\pi_{\cup} = \bot(\pi_1, \pi_2)$
 - Croyances : $m_{\cup}(A) = \sum_{E_1 \cup E_2 = A} m(E_1) m(E_2)$
 - Probabilités Imp. : $\mathcal{P}_{\cup} = \dot{\mathcal{P}}_{1} \dot{\cup} \mathcal{P}_{2}$
 - → Propriété de convexité pas généralement conservée
- ullet Comptage (moyenne) ($K_{e_1} \cap K_{e_2} \supseteq K_{e_1} * K_{e_2} \supseteq K_{e_1} \cup K_{e_2}$)

- Conjonctif $(K_{e_1} * K_{e_2} \subseteq K_{e_1} \cap K_{e_2})$
- Disjonctif $(K_{e_1} * K_{e_2} \supseteq K_{e_1} \cup K_{e_2})$
- ullet Comptage (moyenne) ($K_{e_1} \cap K_{e_2} \supseteq K_{e_1} * K_{e_2} \supseteq K_{e_1} \cup K_{e_2}$)
 - Possibilités : $\pi_{\sum} = \sum_{i} \lambda_{i} \pi_{i}$
 - Croyances : $m_{\sum}(A) = \sum_{i} \lambda_{i} m_{i}(A)$
 - Probabilités Imp. : $\mathcal{P}_{\Sigma} = \sum_{i} \lambda_{i} \mathcal{P}_{i}$

Autres modes

Autres méthodes de fusion

Construites à partir des primitives

- Sous-ensembles maximaux cohérents
- Raffinement hiérarchique

Approches bayesiennes

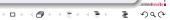
Divergences entre théories : illustration

Opinions expertes

	Expert 1	Expert 2
Intervalle à 60%	[3, 5]	[6,8]
Intervalle à 100%	[1, 7]	[4, 10]

Conjonction

Possibilités	Croyances	Proba. imp.
m([4,7]) = 0.4	m([4,7]) = 0.16	$\emptyset \to$
	m([4,5]) = 0.24	P([3,5]) > 0.6 et
	m([6,7]) = 0.24	P([6,8]) > 0.6
$m(\emptyset) = 0.6$	$m([\emptyset]) = 0.36$	impossible



Conclusions

- Traitement des opinions peut se faire dans un cadre commun (méthodes proposées dans une théorie le plus souvent directement extensibles aux autres)
- Divergence des résultats selon le formalisme adopté, même avec des données et des objectifs communs → besoin de poursuivre l'étude des relations entre théories.

