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Family P of probabilities can be hard to represent (even by
lower (P(A)) and upper (P(A)) probabilities). Special cases
easier to handle exist :

1 Random Sets and Possibility distributions

2 P-Boxes

3 Clouds
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Random Sets formalism

Definition
Multi-valued mapping from probability space to space X
Here, mass function m : 2X → [0, 1] and

∑
E⊆X m(E) = 1

A set E ⊆ X is a focal set iff m(E) > 0
Belief function : Bel(A) =

∑
E ,E⊆A m(E)

Plausibility function : Pl(A) =
∑

E ,E∩A6=∅ m(E)

Probability family induced by random sets

PBel = {P|∀A ⊆ X measurable, Bel(A) ≤ P(A) ≤ Pl(A)}
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Possibility formalism

Definition
Mapping π : X → [0, 1] and ∃x ∈ X s.t. π(x) = 1
Possibility measure: Π(A) = supx∈A π(x)

Necessity measure: N(A) = 1 − Π(Ac)

Possibility and random sets
Possibility distribution = random set with nested focal elements

Probability family induced by possibility distribution

Pπ = {P|∀A ⊆ X measurable, N(A) ≤ P(A) ≤ Π(A)}
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Generalized cumulative distribution

Usual cumulative distribution
Let Pr be a probability function on R : the cumulative
distribution is F (x) = Pr((−∞, x ])

Preliminary definitions

Let X be a finite domain of n elements and α = (α1 . . . αn)
a probability distribution
R is a relation defining a complete pre-ordering ≤R on X
a R-downset (x ]R contains every element xi s.t. xi ≤R x

Definition
Given a relation R, a generalized cumulative distribution is
defined as Fα

R (x) = Pr((x ]R).
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Generalized cumulative distribution : illustration

x1 x2 x3
≤R0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fα
R (x)

example

X = {x1, x2, x3}

α = {0.3, 0.5, 0.2}
R : xi < xj iff i < j
XR = {x1, x2, x3}

Cumulative prob.

Fα
R (x1) = P(x1) = 0.3

Fα
R (x2) = P(x1, x2) = 0.8

Fα
R (x3) = P(x1, x2, x3) = 1
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Generalized cumulative distribution : illustration
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R : xi < xj iff i < j
XR = {x1, x2, x3}

Cumulative prob.

Fα
R (x1) = P(x1) = 0.3

Fα
R (x2) = P(x1, x2) = 0.8

Fα
R (x3) = P(x1, x2, x3) = 1
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Generalized P-boxes : definition

Usual P-boxes

A P-box is a pair of cumulative distributions (F , F ) bounding an
imprecisely known distribution F (F ≤ F ≤ F )

Definition
Given R, a generalized p-box is a pair of gen. cumulative
distributions (F α

R (x) ≤ Fβ
R (x)) bounding an imprecisely known

distribution FR(x)

Probability family induced by generalized p-box

Pp−box = {P|∀x ∈ X measurable, F α
R (x) ≤ FR(x) ≤ Fβ

R (x)}
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Generalized P-boxes : constraint representation

To define a complete pre-order R between elements xi is
equivalent to define a sequence of nested confidence sets.

Let Ai = (xi ]R with xi ≤R xj iff i < j
A1 ⊂ A2 ⊂ . . . ⊂ An

Gen. P-box can be encoded by following constraints :

αi ≤ P(Ai) ≤ βi i = 1, . . . , n
α1 ≤ α2 ≤ . . . ≤ αn ≤ 1
β1 ≤ β2 ≤ . . . ≤ βn ≤ 1
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Generalized P-box : illustration

x1 x2 x3
≤R0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FR(x)

Fα
R (x)=F∗(x)

Fβ

R (x)=F∗(x)

constraints
0.1 ≤ P(A1) = P(x1) ≤ 0.4
0.3 ≤ P(A2) = P(x1, x2) ≤ 0.8
1 ≤ P(A3) = P(x1, x2, x3) ≤ 1
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Generalized P-box : another illustration

A more surprising gen. p-box

This also defines a generalized p-box.

F ∗

F∗

1
m

xy

m : mode of the two
distributions
R : x ≤R y ⇔ |x − m| ≤
|y − m|
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Random sets/P-boxes relation

Theorem
Any generalized p-box is a special case of random set (there is
a random set such that PBel = Pp−box )

Sketch of proof
Lower probabilities on every possible event are the same in the
two cases
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P-Box → random set algorithm

A1 A2 ... Ai ... An=X

F1 A2\A1

algorithm
1 Build partition of X
2 Order αi , βi and

rename them γl

3 Build focal sets Ei
with weights
m(El) = γl − γl−1

S. Destercke, D. Dubois, E. Chojnacki On the rel. between r. s., poss. distributions, p-boxes & clouds



Random Sets and Possibility distributions
P-Boxes

Clouds

Generalized P-Boxes
Relationships between P-Boxes and random sets
Relationships between P-Boxes and possibility distribution

P-Box → random set algorithm

A1 A2 ... Ai ... An=X

F1 F2
... ...

Ai\Ai−1 An\An−1

algorithm
1 Build partition of X
2 Order αi , βi and

rename them γl

3 Build focal sets Ei
with weights
m(El) = γl − γl−1
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P-Box → random set algorithm

A1 A2 ... Ai ... An=X

F1 F2
... ...Fi Fn

α0=β0=0≤α1≤...≤βn≤1=βn+1=αn+1

α0=γ0=0≤γ1≤...≤γ2n≤1=γ2n+1=βn+1

algorithm
1 Build partition of X
2 Order αi , βi and

rename them γl

3 Build focal sets Ei
with weights
m(El) = γl − γl−1
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P-Box → random set algorithm

A1 A2 ... Ai ... An=X

F1 F2
... ...Fi Fn

α0=β0=0≤α1≤...≤βn≤1=βn+1=αn+1

α0=γ0=0≤γ1≤...≤γ2n≤1=γ2n+1=βn+1

m(El) = γl − γl−1

with El = El−1 ∪ Fi+1 if γl−1 = αi

with El = El−1 \ Fi if γl−1 = βi

algorithm
1 Build partition of X
2 Order αi , βi and

rename them γl

3 Build focal sets Ei
with weights
m(El) = γl − γl−1
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graphical representation

x1 x2 x3
≤R0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

FR(x)

F∗(x)

F∗(x)

Random Set
m(E1) = m({x1}) = 0.1
m(E2) = m({x1, x2}) = 0.2
m(E3) = m({x1, x2, x3}) = 0.1
m(E4) = m({x2, x3}) = 0.4
m(E5) = m({x3}) = 0.2
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Generalized cumulative distribution
An upper generalized cumulative distribution F ∗(x) can be
viewed as a possibility distribution π, since
maxx∈A F ∗(x) ≥ Pr(A). If F∗(x) is a lower generalized
cumulative distribution, we have
minx∈Ac F∗(x) ≤ Pr(A) → maxx∈Ac (1 − F∗(x)) ≥ Pr(Ac)

Generalized P-box
Two generalized cumulative distributions F ∗(x) ≥ F∗(x)

Let π be a possibility distribution s.t. π = F ∗(x)

Let π be a possibility distribution s.t. π = 1 − F∗(x)

Probability families equivalence
We have that Pp−box = Pπ ∩ Pπ
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Illustration

1

F ∗(x) F∗(x)

ππ

Relations
(Pp−box = Pπ ∩ Pπ)
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Illustration

1

F ∗(x) F∗(x)

ππ

min(π, π)

Relations
(Pp−box = Pπ ∩ Pπ) ⊃ (Pmin(π,π))
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Clouds : Introduction

Definition
A cloud can be viewed as a pair of dist. [δ(x) ≤ π(x)]

A r.v. X ∈ cloud iff P({x |δ(x)≥α}) ≤ 1 − α ≤ P({x |π(x)>α})

P ∈ Pπ iff 1 − P(π(x) > α) ≥ α (Dubois et al.,2004)
And we have 1 − P(1 − δ(x) > β) ≥ β with β = 1 − α

1 − δ = π and π are possibility distributions

πx

δx

α

1
πx

1 − δx

1
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Clouds : Introduction

Definition
A cloud can be viewed as a pair of dist. [δ(x) ≤ π(x)]

A r.v. X ∈ cloud iff P({x |δ(x)≥α}) ≤ 1 − α ≤ P({x |π(x)>α})

P ∈ Pπ iff 1 − P(π(x) > α) ≥ α (Dubois et al.,2004)
And we have 1 − P(1 − δ(x) > β) ≥ β with β = 1 − α

1 − δ = π and π are possibility distributions
We have that Pcloud = Pπ ∩ P1−δ=π (Dubois & Prade 2005)

πx

δx

α

1
πx

1 − δx = πx

1
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Discrete clouds : formalism

Discrete clouds as collection of sets
Discrete clouds can be viewed as two set collections

∅ = A0 ⊂ A1 ⊆ A2 ⊆ . . . ⊆ An ⊂ An+1 = X (πx)

∅ = B0 ⊂ B1 ⊆ B2 ⊆ . . . ⊆ Bn ⊂ Bn+1 = X (δx)

Bi ⊆ Ai (δx ≤ πx)

with constraints
P(Bi) ≤ 1 − αi ≤ P(Ai)

1 = α0 > α1 > α2 > . . . > αn > αn+1 = 0
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Relationship between clouds and generalized p-boxes

Theorem
A generalized p-box is a particular case of cloud

Proof.
F ∗(x) > F∗(x)

F ∗(x) → possibility distribution π

F∗(x) → distribution δ and π = 1 − δ is a possibility
distribution
Gen. P-box equivalent to the cloud [δ, π]
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Illustration

1

F ∗(x) = π F∗(x) = δ
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Relationship between clouds and generalized p-boxes

Theorem
A cloud is a gen. p-box iff the set {Ai , Bj} i , j = {1, . . . , n} forms
a complete order with respect to inclusion
(∀i , j Ai ⊆ Bj or Ai ⊇ Bj )

Proof.
Idea : mapping constraints defining a discrete cloud into
constraints defining a generalized p-box.
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Relationship between clouds and generalized p-boxes

A1 ⊂ . . . ⊂ An B1 ⊂ . . . ⊂ Bn

C1 ⊂ . . . ⊂ Ck ⊂ . . . ⊂ C2n

P(Bi) ≤ 1 − αi ≤ P(Ai) γk ≤ P(Ck ) ≤ βk

if Ck = Ai , γk = 1 − αi ,βk = min{1 − αj : Ai ⊆ Bj}

if Ck = Bi , βk = 1 − αi ,γk = max{1 − αj : Aj ⊆ Bi}
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Corollary

A cloud [δ, π] is a generalized p-box iff δ, π are comonotonic

Ai

Bj

Ai

Bj

Ai ⊆ Bj or Ai ⊇ Bj Ai * Bj and Ai + Bj

Comonotonic cloud Non-comonotonic cloud
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Characterization of non-comonotonic clouds

Theorem
Lower probability induced by a non-comonotonic cloud is not
2-monotone: ∃A, B ⊂ X s.t. P(A∩B) + P(A∪B) < P(A) + P(B)

Proof.
(Chateauneuf, 1994) m1,m2 2 rand. sets. with focal sets F1,F2
and Q the set of normalized joint rand. sets. s.t. if Q ∈ Q

Q(A, B) > 0 ⇒ A × B ∈ F1 ×F2

A ∩ B = ∅ ⇒ Q(A, B) = 0
m1(A) =

∑
B∈F2

Q(A, B) and m2(B) =
∑

A∈F1
Q(A, B)

Finding P(E) on PBel1 ∩ PBel2 is equivalent to finding
minQ∈Q

∑
(A∩B)⊆E Q(A, B)

→ using this result on Pcloud = Pπ ∩ P1−δ
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Non-comonotonic clouds : 4 sets case

Let us consider the following cloud

sets A1,A2,B1,B2 P(B1) ≤ 1 − α1 ≤ P(A1)
A1⊂A2,B1⊂B2 and constraints P(B2) ≤ 1 − α2 ≤ P(A2)

Bi⊂Ai 1 > α1 > α2 > 0

with added constraint A1∩B2 6={A1,B2,∅} (non-comonotonicity).
π, π = 1 − δ are respectively equivalent to belief functions

π π = 1 − δ

m(A1) = 1 − α1 m(Bc
0 = X ) = 1 − α1

m(A2) = α1 − α2 m(Bc
1) = α1 − α2

m(A3 = X ) = α2 m(Bc
2) = α2
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Bc
0 = X Bc

1 Bc
2

A1∩Bc
0 6=∅ A1∩Bc

1 6=∅ A1∩Bc
2 6=∅

A1 1 − α1

A2∩Bc
0 6=∅ A2∩Bc

1 6=∅ A2∩Bc
2 6=∅

A2 α1 − α2

A3∩Bc
0 6=∅ A3∩Bc

1 6=∅ A3∩Bc
2 6=∅

A3 = X α2

1 − α1 α1 − α2 α2

P(A1) = 1 − α1, P(Bc
2) = α2
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Bc
0 = X Bc

1 Bc
2

A1∩Bc
0 6=∅ A1∩Bc

1 6=∅ A1∩Bc
2 6=∅

A1 1 − α1 0 0 1 − α1

A2∩Bc
0 6=∅ A2∩Bc

1 6=∅ A2∩Bc
2 6=∅

A2 0 α1 − α2 0 α1 − α2

A3∩Bc
0 6=∅ A3∩Bc

1 6=∅ A3∩Bc
2 6=∅

A3 = X 0 0 α2 α2

1 − α1 α1 − α2 α2

P(A1) = 1 − α1, P(Bc
2) = α2 , P(A1 ∩ Bc

2) = 0
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Bc
0 = X Bc

1 Bc
2

A1∩Bc
0 6=∅ A1∩Bc

1 6=∅ A1∩Bc
2 6=∅

A1 1−α1− 0 min(α2,1−α1) 1 − α1
min(1−α1,α2)

A2∩Bc
0 6=∅ A2∩Bc

1 6=∅ A2∩Bc
2 6=∅

A2 0 α1−α2 0 α1 − α2

A3∩Bc
0 6=∅ A3∩Bc

1 6=∅ A3∩Bc
2 6=∅

A3 = X min(1−α1,α2) 0 α2−min(1−α1,α2) α2

1 − α1 α1 − α2 α2

P(A1) = 1 − α1, P(Bc
2) = α2 , P(A1 ∩ Bc

2) = 0
P(A1 ∪ Bc

2) = α2 + 1 − α1 − min(α2, 1 − α1) = max(α2, 1 − α1)
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Bc
0 = X Bc

1 Bc
2

A1∩Bc
0 6=∅ A1∩Bc

1 6=∅ A1∩Bc
2 6=∅

A1 1 − α1

A2∩Bc
0 6=∅ A2∩Bc

1 6=∅ A2∩Bc
2 6=∅

A2 α1 − α2

A3∩Bc
0 6=∅ A3∩Bc

1 6=∅ A3∩Bc
2 6=∅

A3 = X α2

1 − α1 α1 − α2 α2

P(A1) = 1 − α1, P(Bc
2) = α2 , P(A1 ∩ Bc

2) = 0
P(A1 ∪ Bc

2) = max(α2, 1 − α1)
⇒ max(α2, 1 − α1)<1 − α1 + α2
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Bc
0=X Bc

1 ··· Bc
i−1 · Bc

j ··· Bc
n

A1 q11 q12 ... q1i · q1(j+1) ... q1(n+1)

...
...

...
. . .

...
...

Ai qi1 qi2 ... qii · qi(j+1) ... qi(n+1)

...
...

...
...

...
...

. . .
...

Aj+1 q(j+1)1 q(j+1)2 ... q(j+1)i · q(j+1)(j+1) ... q(j+1)(n+1)

...
...

...
...

...
...

. . .
...

An qn1 qn2 ... qni · qn(j+1) ... qn(n+1)

An+1=X q(n+1)1 q(n+1)2 ... q(n+1)i · q(n+1)(j+1) ... q(n+1)(n+1)

General case
From any non-comonotonic cloud, we can extract a 2× 2 matrix
(Ai ∩ Bj 6= {Ai , Bj , ∅}) and make a similar reasoning.
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Relations : graphical summary

Clouds
Gen. P−boxes

Possibilities

Random sets

Imprecise probabilities

Lower/upper probabilities

P−boxes
Pr
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Approximation of non-comonotonic clouds

Since capacities that are not 2-monotone can be difficult to
handle, it is desirable to find approximations easy to compute
and handle

Theorem
The following bounds provide an outer approximation of
[P∗(A), P∗(A)] of P(A) where P ∈ Pδ,π:

max(Nπ(A), N1−δ(A)) ≤ P(A) ≤ min(Ππ(A), Π1−δ(A)) ∀A ⊂ X

Proof.
Immediate, since we known that Pcloud = Pπ ∩ P1−δ
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Approximation of non-comonotonic clouds

Theorem
Given the sets {Bi , Ai , i = 1, . . . , n} forming the distributions
(δ, π) of a cloud and the corresponding αi , the belief and
plausibility measures of the random set s.t.
m(Ai \ Bi−1) = αi−1 − αi are inner approximations of Pδ,π.

Proof.
Ai \ Bi−1 6= ∅ (by definition) and the random set given above is
always coherent with the marginal random sets induced by δ, π.
Bounds are exact in case of comonotonicity.
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Results summary

A gen. P-box is a special case of random set and can be
represented by two possibility distributions
Clouds are also equivalent to a pair of possibility
distributions.

Comonotonic clouds are equivalent to generalized p-boxes
and thus are a special case of random sets
Non-comonotonic clouds are not 2-monotone in the general
case, but they can be easily approximated.
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Perspectives, Open problems and questions

Continuous case on the real line
If our propositions hold in the continuous case on the real line,
then a comonotonic cloud can be characterized by a
continuous belief function (Similar to Smets, 2005) with uniform
mass density, whose focal elements would be disjoint sets of
the form [x(α), u(α)] ∪ [v(α), y(α)] where
{x : π(x) ≥ α} = [x(α), y(α)] and {x : δ(x) ≥ α} = [u(α), v(α)].

This remains to be proved.
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Perspectives, Open problems and questions

The special case of thin clouds
A thin cloud (δ = π) contains an ∞ of probability distributions
(Dub. & Pra. 2005). The induced continuous bel. f. would be a
uniform mass density distributed over doubletons {x(α), y(α)}

Cumulative distributions F ∗, F∗ are in the thin cloud

10 12 14 16 18 20 22 24 26 28 30
0

0.2

0.4

0.6

0.8

1

δ = π 

F* ∈ P
[δ,π]

10 12 14 16 18 20 22 24 26 28 30
0

0.2

0.4

0.6

0.8

1

δ = π 

F
*
 ∈ P

[δ,π]
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Perspectives, Open problems and questions

Towards generalization

Are results of the type
Pcloud = Pπ ∩ P1−δ

Structure of comonotonic clouds and gen. p-boxes are
similar, and are ∞-monotone capacities
Non-comonotonic clouds are not 2-monotone

still true in spaces X of infinite cardinality ? and under which
(topological, measurability, ...) assumptions ?
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Perspectives, Open problems and questions

Operations on Gen. p-boxes and clouds
Are operations of

Fusion
Conditioning
Propagation through a mathematical model

easy to define for gen. p-boxes and clouds ? which property of
the representations do they conserve ? (e.g.
[δ1, π1] ∩ [δ2, π2] = [max(δ1, δ2), min(π1, π2)] is easy to compute
and is still a cloud, but can be expected to be an inner approx.
of P[δ1,π1] ∩ P[δ2,π2])
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