On the relationships between random sets, possibility distributions, p-boxes and clouds

S. Destercke ¹ D. Dubois ² and E. Chojnacki ¹

¹Institute of radioprotection and nuclear safety Cadarache, France

²Toulouse institute of computer science University Paul-Sabatier

Linz 2007

Outline

Family \mathcal{P} of probabilities can be hard to represent (even by lower $(\underline{P}(A))$ and upper $(\overline{P}(A))$ probabilities). Special cases easier to handle exist:

- Random Sets and Possibility distributions
- P-Boxes
- Clouds

Outline

- Random Sets and Possibility distributions
- P-Boxes
 - Generalized P-Boxes
 - Relationships between P-Boxes and random sets
 - Relationships between P-Boxes and possibility distribution
- Clouds
 - Clouds formalism
 - Relations and characterization
 - Approximating clouds

Random Sets formalism

Definition

- Multi-valued mapping from probability space to space X
- Here, mass function $m: 2^X \to [0,1]$ and $\sum_{E \subset X} m(E) = 1$
- A set $E \subseteq X$ is a focal set iff m(E) > 0
- Belief function : $Bel(A) = \sum_{E,E \subseteq A} m(E)$
- Plausibility function : $PI(A) = \sum_{E,E \cap A \neq \emptyset} m(E)$

Probability family induced by random sets

$$\mathcal{P}_{Bel} = \{P | \forall A \subseteq X \text{ measurable, } Bel(A) \leq P(A) \leq Pl(A)\}$$

Possibility formalism

Definition

- Mapping $\pi: X \to [0,1]$ and $\exists x \in X \text{ s.t. } \pi(x) = 1$
- Possibility measure: $\Pi(A) = \sup_{x \in A} \pi(x)$
- Necessity measure: $N(A) = 1 \Pi(A^c)$

Possibility and random sets

Possibility distribution = random set with nested focal elements

Probability family induced by possibility distribution

$$\mathcal{P}_{\pi} = \{P | \forall A \subseteq X \text{ measurable}, N(A) \leq P(A) \leq \Pi(A)\}$$

Outline

- Random Sets and Possibility distributions
- P-Boxes
 - Generalized P-Boxes
 - Relationships between P-Boxes and random sets
 - Relationships between P-Boxes and possibility distribution
- Clouds
 - Clouds formalism
 - Relations and characterization
 - Approximating clouds

Generalized cumulative distribution

Usual cumulative distribution

Let Pr be a probability function on $\mathbb R$: the cumulative distribution is $F(x)=\Pr((-\infty,x])$

Preliminary definitions

- Let X be a finite domain of n elements and $\alpha = (\alpha_1 \dots \alpha_n)$ a probability distribution
- R is a relation defining a complete pre-ordering ≤_R on X
- a *R*-downset $(x]_R$ contains every element x_i s.t. $x_i \leq_R x$

Definition

Given a relation R, a generalized cumulative distribution is defined as $F_R^{\alpha}(x) = \Pr((x|_R)$.

Generalized cumulative distribution: illustration

example

- $X = \{x_1, x_2, x_3\}$
- $\alpha = \{0.3, 0.5, 0.2\}$
- $R: x_i < x_i \text{ iff } i < j$
- $X_B = \{x_1, x_2, x_3\}$

Cumulative prob.

- $F_R^{\alpha}(x_1) = P(x_1) = 0.3$
- $F_R^{\alpha}(x_2) = P(x_1, x_2) = 0.8$
- $F_R^{\alpha}(x_3) = P(x_1, x_2, x_3) = 1$

Generalized cumulative distribution: illustration

example

$$X = \{x_1, x_2, x_3\}$$

$$\alpha = \{0.3, 0.5, 0.2\}$$

•
$$R: x_i < x_j \text{ iff } i < j$$

•
$$X_R = \{x_1, x_2, x_3\}$$

Cumulative prob.

•
$$F_R^{\alpha}(x_1) = P(x_1) = 0.3$$

•
$$F_R^{\alpha}(x_2) = P(x_1, x_2) = 0.8$$

•
$$F_R^{\alpha}(x_3) = P(x_1, x_2, x_3) = 1$$

Generalized cumulative distribution: illustration

example

- $X = \{x_1, x_2, x_3\}$
- $\alpha = \{0.3, 0.5, 0.2\}$
- $R: x_i < x_i \text{ iff } i < j$
- $X_R = \{x_1, x_2, x_3\}$

Cumulative prob.

- $F_R^{\alpha}(x_1) = P(x_1) = 0.3$
- $F_R^{\alpha}(x_2) = P(x_1, x_2) = 0.8$
- $F_{R}^{\alpha}(x_3) = P(x_1, x_2, x_3) = 1$

Generalized P-boxes: definition

Usual P-boxes

A P-box is a pair of cumulative distributions $(\underline{F}, \overline{F})$ bounding an imprecisely known distribution F $(\underline{F} \leq F \leq \overline{F})$

Definition

Given R, a generalized p-box is a pair of gen. cumulative distributions $(F_R^{\alpha}(x) \leq F_R^{\beta}(x))$ bounding an imprecisely known distribution $F_R(x)$

Probability family induced by generalized p-box

$$\mathcal{P}_{p-box} = \{P | \forall x \in X \text{ measurable, } F_R^{\alpha}(x) \leq F_R(x) \leq F_R^{\beta}(x)\}$$

Generalized P-boxes: constraint representation

To define a complete pre-order R between elements x_i is equivalent to define a sequence of nested confidence sets.

- Let $A_i = (x_i]_R$ with $x_i \leq_R x_j$ iff i < j
- \bullet $A_1 \subset A_2 \subset \ldots \subset A_n$
- Gen. P-box can be encoded by following constraints :

$$\alpha_i \leq P(A_i) \leq \beta_i$$
 $i = 1, ..., n$
 $\alpha_1 \leq \alpha_2 \leq ... \leq \alpha_n \leq 1$
 $\beta_1 < \beta_2 < ... < \beta_n < 1$

Generalized P-box: illustration

constraints

•
$$0.1 \le P(A_1) = P(x_1) \le 0.4$$

$$0.3 \le P(A_2) = P(x_1, x_2) \le 0.8$$

Generalized P-box: another illustration

A more surprising gen. p-box

This also defines a generalized p-box.

- m : mode of the two distributions
- R: $x \leq_R y \Leftrightarrow |x m| \leq |y m|$

Random sets/P-boxes relation

Theorem

Any generalized p-box is a special case of random set (there is a random set such that $\mathcal{P}_{Bel} = \mathcal{P}_{p-box}$)

Sketch of proof

Lower probabilities on every possible event are the same in the two cases

- Build partition of X
- ② Order α_i , β_i and rename them γ_I
- Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- Build partition of X
- 2 Order α_i , β_i and rename them γ_I
- Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- \bigcirc Build partition of X
- 2 Order α_i , β_i and rename them γ_I
- 3 Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- \bigcirc Build partition of X
- 2 Order α_i , β_i and rename them γ_I
- Solution Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

graphical representation

Random Set

- $m(E_1) = m(\{x_1\}) = 0.1$
- $m(E_2) = m(\{x_1, x_2\}) = 0.2$
- $m(E_3) = m(\{x_1, x_2, x_3\}) = 0.1$
- $m(E_4) = m(\{x_2, x_3\}) = 0.4$
- $m(E_5) = m(\{x_3\}) = 0.2$

Generalized cumulative distribution

An upper generalized cumulative distribution $F^*(x)$ can be viewed as a possibility distribution π , since $\max_{x \in A} F^*(x) \ge \Pr(A)$. If $F_*(x)$ is a lower generalized cumulative distribution, we have $\min_{x \in A^c} F_*(x) \le \Pr(A) \to \max_{x \in A^c} (1 - F_*(x)) \ge \Pr(A^c)$

Generalized P-box

- Two generalized cumulative distributions $F^*(x) \ge F_*(x)$
- Let π be a possibility distribution s.t. $\pi = F^*(x)$
- Let $\overline{\pi}$ be a possibility distribution s.t. $\overline{\pi} = 1 F_*(x)$

Probability families equivalence

We have that $\mathcal{P}_{p-box} = \mathcal{P}_{\pi} \cap \mathcal{P}_{\overline{\pi}}$

Illustration

Relations

$$(\mathcal{P}_{p-box} = \mathcal{P}_{\pi} \cap \mathcal{P}_{\overline{\pi}})$$

Illustration

Relations

$$(\mathcal{P}_{p-box} = \mathcal{P}_{\pi} \cap \mathcal{P}_{\overline{\pi}}) \supset (\mathcal{P}_{\min(\pi,\overline{\pi})})$$

Outline

- Random Sets and Possibility distributions
- P-Boxes
 - Generalized P-Boxes
 - Relationships between P-Boxes and random sets
 - Relationships between P-Boxes and possibility distribution
- Clouds
 - Clouds formalism
 - Relations and characterization
 - Approximating clouds

Clouds: Introduction

Definition

- A cloud can be viewed as a pair of dist. $[\delta(x) \leq \pi(x)]$
- A r.v. $X \in \text{cloud iff } P(\{x | \delta(x) \ge \alpha\}) \le 1 \alpha \le P(\{x | \pi(x) > \alpha\})$
- $P \in \mathcal{P}_{\pi}$ iff $1 P(\pi(x) > \alpha) \ge \alpha$ (Dubois et al.,2004)
- And we have $1 P(1 \delta(x) > \beta) \ge \beta$ with $\beta = 1 \alpha$
- 1 $-\delta = \overline{\pi}$ and π are possibility distributions

4

Clouds: Introduction

Definition

- A cloud can be viewed as a pair of dist. $[\delta(x) \leq \pi(x)]$
- A r.v. $X \in \text{cloud iff } P(\{x | \delta(x) \ge \alpha\}) \le 1 \alpha \le P(\{x | \pi(x) > \alpha\})$
- $P \in \mathcal{P}_{\pi}$ iff $1 P(\pi(x) > \alpha) \ge \alpha$ (Dubois et al.,2004)
- And we have $1 P(1 \delta(x) > \beta) \ge \beta$ with $\beta = 1 \alpha$
- $1 \delta = \overline{\pi}$ and π are possibility distributions
- We have that $\mathcal{P}_{cloud} = \mathcal{P}_{\pi} \cap \mathcal{P}_{1-\delta=\overline{\pi}}$ (Dubois & Prade 2005)

Discrete clouds: formalism

Discrete clouds as collection of sets

Discrete clouds can be viewed as two set collections

$$\bullet \emptyset = A_0 \subset A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n \subset A_{n+1} = X \quad (\pi_X)$$

•
$$\emptyset = B_0 \subset B_1 \subseteq B_2 \subseteq \ldots \subseteq B_n \subset B_{n+1} = X \quad (\delta_x)$$

•
$$B_i \subseteq A_i \quad (\delta_X \le \pi_X)$$

with constraints

$$P(B_i) \leq 1 - \alpha_i \leq P(A_i)$$

•
$$1 = \alpha_0 > \alpha_1 > \alpha_2 > \ldots > \alpha_n > \alpha_{n+1} = 0$$

Relationship between clouds and generalized p-boxes

Theorem

A generalized p-box is a particular case of cloud

Proof.

- $F^*(x) > F_*(x)$
- $F^*(x) \rightarrow \text{possibility distribution } \pi$
- $F_*(x) \rightarrow$ distribution δ and $\overline{\pi} = 1 \delta$ is a possibility distribution
- Gen. P-box equivalent to the cloud $[\delta, \pi]$

Illustration

Relationship between clouds and generalized p-boxes

Theorem

A cloud is a gen. p-box iff the set $\{A_i, B_j\}$ $i, j = \{1, ..., n\}$ forms a complete order with respect to inclusion $(\forall i, j \ A_i \subseteq B_i \ or \ A_i \supseteq B_i)$

Proof.

Idea: mapping constraints defining a discrete cloud into constraints defining a generalized p-box.

Relationship between clouds and generalized p-boxes

$$A_{1} \subset \ldots \subset A_{n}$$

$$B_{1} \subset \ldots \subset B_{n}$$

$$C_{1} \subset \ldots \subset C_{k} \subset \ldots \subset C_{2n}$$

$$P(B_{i}) \leq 1 - \alpha_{i} \leq P(A_{i}) \xrightarrow{} \gamma_{k} \leq P(C_{k}) \leq \beta_{k}$$

$$\longrightarrow \text{if } C_{k} = A_{i}, \gamma_{k} = 1 - \alpha_{i}, \beta_{k} = \min\{1 - \alpha_{j} : A_{i} \subseteq B_{j}\}$$

$$\longrightarrow \text{if } C_{k} = B_{i}, \beta_{k} = 1 - \alpha_{i}, \gamma_{k} = \max\{1 - \alpha_{j} : A_{j} \subseteq B_{i}\}$$

Corollary

A cloud $[\delta, \pi]$ is a generalized p-box iff δ, π are comonotonic

Comonotonic cloud

Non-comonotonic cloud

Characterization of non-comonotonic clouds

Theorem

Lower probability induced by a non-comonotonic cloud is not 2-monotone: $\exists A, B \subset X \text{ s.t. } \underline{P}(A \cap B) + \underline{P}(A \cup B) < \underline{P}(A) + \underline{P}(B)$

Proof.

(Chateauneuf, 1994) m_1, m_2 2 rand. sets. with focal sets $\mathcal{F}_1, \mathcal{F}_2$ and \mathcal{Q} the set of normalized joint rand. sets. s.t. if $Q \in \mathcal{Q}$

•
$$Q(A, B) > 0 \Rightarrow A \times B \in \mathcal{F}_1 \times \mathcal{F}_2$$

•
$$A \cap B = \emptyset \Rightarrow Q(A, B) = 0$$

•
$$m_1(A) = \sum_{B \in \mathcal{F}_2} Q(A, B)$$
 and $m_2(B) = \sum_{A \in \mathcal{F}_1} Q(A, B)$

Finding $\underline{P}(E)$ on $\mathcal{P}_{Bel_1} \cap \mathcal{P}_{Bel_2}$ is equivalent to finding $\min_{Q \in \mathcal{Q}} \sum_{(A \cap B) \subseteq E} Q(A, B)$

ightarrow using this result on $\mathcal{P}_{cloud} = \mathcal{P}_{\pi} \cap \mathcal{P}_{1-\delta}$

Non-comonotonic clouds: 4 sets case

Let us consider the following cloud

sets
$$A_1,A_2,B_1,B_2$$
 $P(B_1) \le 1 - \alpha_1 \le P(A_1)$ $A_1 \subset A_2,B_1 \subset B_2$ and constraints $P(B_2) \le 1 - \alpha_2 \le P(A_2)$ $1 > \alpha_1 > \alpha_2 > 0$

with added constraint $A_1 \cap B_2 \neq \{A_1, B_2, \emptyset\}$ (non-comonotonicity). $\pi, \overline{\pi} = 1 - \delta$ are respectively equivalent to belief functions

π	$\overline{\pi} = 1 - \delta$
$m(A_1)=1-\alpha_1$	$m(B_0^c = X) = 1 - \alpha_1$
$m(A_2) = \alpha_1 - \alpha_2$	$m(B_1^c) = \alpha_1 - \alpha_2$
$m(A_3=X)=\alpha_2$	$m(B_2^c) = \alpha_2$

	$B_0^c = X$	B_1^c	B_2^c	
A ₁	$A_1 \cap B_0^c \neq \emptyset$	$A_1 \cap B_1^c \neq \emptyset$	$A_1 \cap B_2^c \neq \emptyset$	$1-lpha_1$
<i>A</i> ₂	$A_2 \cap B_0^c \neq \emptyset$	$A_2 \cap B_1^c \neq \emptyset$	$A_2 \cap B_2^c \neq \emptyset$	$\alpha_1 - \alpha_2$
$A_3 = X$	$A_3 \cap B_0^c \neq \emptyset$	$A_3 \cap B_1^c \neq \emptyset$	$A_3 \cap B_2^c \neq \emptyset$	α_2
	$1-\alpha_1$	$\alpha_1 - \alpha_2$	α_2	

$$\underline{P}(A_1) = 1 - \alpha_1, \underline{P}(B_2^c) = \alpha_2$$

	$B_0^c = X$	B_1^c	B_2^c	
<i>A</i> ₁	$ \begin{array}{c} A_1 \cap B_0^c \neq \emptyset \\ 1 - \alpha_1 \end{array} $	$A_1 \cap B_1^c \neq \emptyset$	$A_1 \cap B_2^c \neq \emptyset$	$1-\alpha_1$
A ₂	$A_2 \cap B_0^c \neq \emptyset$	$A_2 \cap B_1^c \neq \emptyset$ $\alpha_1 - \alpha_2$	$A_2 \cap B_2^c \neq \emptyset$	$\alpha_1 - \alpha_2$
$A_3 = X$	$A_3 \cap B_0^c \neq \emptyset$	$A_3 \cap B_1^c \neq \emptyset$	$A_3 \cap B_2^c \neq \emptyset$ α_2	α_2
	$1-\alpha_1$	$\alpha_1 - \alpha_2$	α_2	

$$\underline{P}(A_1) = 1 - \alpha_1, \underline{P}(B_2^c) = \alpha_2, \underline{P}(A_1 \cap B_2^c) = 0$$

	$B_0^c = X$	B_1^c	B_2^c	
	$A_1 \cap B_0^c \neq \emptyset$	$A_1 \cap B_1^c \neq \emptyset$	$A_1 \cap B_2^c \neq \emptyset$	
A_1	$1-\alpha_1-$	0	$\min(\alpha_2,1-\alpha_1)$	$1-\alpha_1$
	$\min(1-\alpha_1,\alpha_2)$			
	$A_2 \cap B_0^c \neq \emptyset$	$A_2 \cap B_1^c \neq \emptyset$	$A_2\cap B_2^c eq\emptyset$	
A_2	0	$\alpha_1 - \alpha_2$	0	$\alpha_1 - \alpha_2$
	$A_3 \cap B_0^c \neq \emptyset$	$A_3 \cap B_1^c \neq \emptyset$	$A_3\cap B_2^c{ eq}\emptyset$	
$A_3 = X$	$\min(1-\alpha_1,\alpha_2)$	0	α_2 -min(1- α_1 , α_2)	α_2
	$1-\alpha_1$	$\alpha_1 - \alpha_2$	α_2	

$$\begin{array}{l} \underline{P}(A_1)=1-\alpha_1,\underline{P}(B_2^c)=\alpha_2\;,\underline{P}(A_1\cap B_2^c)=0\\ \underline{P}(A_1\cup B_2^c)=\alpha_2+1-\alpha_1-\min(\alpha_2,1-\alpha_1)=\max(\alpha_2,1-\alpha_1) \end{array}$$

	$B_0^c = X$	B_1^c	B_2^c	
<i>A</i> ₁	$A_1 \cap B_0^c \neq \emptyset$	$A_1 \cap B_1^c \neq \emptyset$	$A_1 \cap B_2^c \neq \emptyset$	$1-lpha_1$
A ₂	$A_2 \cap B_0^c \neq \emptyset$	$A_2 \cap B_1^c \neq \emptyset$	$A_2 \cap B_2^c \neq \emptyset$	$\alpha_1 - \alpha_2$
$A_3 = X$	$A_3 \cap B_0^c \neq \emptyset$	$A_3 \cap B_1^c \neq \emptyset$	$A_3 \cap B_2^c \neq \emptyset$	α_2
	$1-\alpha_1$	$\alpha_1 - \alpha_2$	α_2	

$$\underline{P}(A_1) = 1 - \alpha_1, \underline{P}(B_2^c) = \alpha_2, \underline{P}(A_1 \cap B_2^c) = 0$$

$$\underline{P}(A_1 \cup B_2^c) = \max(\alpha_2, 1 - \alpha_1)$$

$$\Rightarrow \max(\alpha_2, 1 - \alpha_1) < 1 - \alpha_1 + \alpha_2$$

	$B_0^c = X$	B_1^c		B_{i-1}^c	B_j^c		B _n ^c
A ₁	911	q ₁₂		q 1 <i>i</i>	$q_{1(j+1)}$		$q_{1(n+1)}$
÷	•	:	٠		÷		:
A_i	<i>q</i> _{i1}	q_{i2}		q_{ii}	$q_{i(j+1)}$		$q_{i(n+1)}$
÷	:	i	÷	:	÷	٠.	:
A_{j+1}	$q_{(j+1)1}$	$q_{(j+1)2}$		$q_{(j+1)i}$	$q_{(j+1)(j+1)}$		$q_{(j+1)(n+1)}$
Ė	:	÷	:	:	:	٠	•
A_n	q_{n1}	q_{n2}		q_{ni}	$q_{n(j+1)}$		$q_{n(n+1)}$
$A_{n+1}=X$	$q_{(n+1)1}$	$q_{(n+1)2}$		$q_{(n+1)i}$	$q_{(n+1)(j+1)}$		$q_{(n+1)(n+1)}$

General case

From any non-comonotonic cloud, we can extract a 2 \times 2 matrix $(A_i \cap B_j \neq \{A_i, B_j, \emptyset\})$ and make a similar reasoning.

Relations: graphical summary

Approximation of non-comonotonic clouds

Since capacities that are not 2-monotone can be difficult to handle, it is desirable to find approximations easy to compute and handle

Theorem

The following bounds provide an outer approximation of $[P_*(A), P^*(A)]$ of P(A) where $P \in \mathcal{P}_{\delta,\pi}$:

$$\max(\textit{N}_{\pi}(\textit{A}),\textit{N}_{1-\delta}(\textit{A})) \leq \textit{P}(\textit{A}) \leq \min(\Pi_{\pi}(\textit{A}),\Pi_{1-\delta}(\textit{A})) \ \forall \textit{A} \subset \textit{X}$$

Proof.

Immediate, since we known that $\mathcal{P}_{cloud} = \mathcal{P}_{\pi} \cap \mathcal{P}_{1-\delta}$

Approximation of non-comonotonic clouds

Theorem

Given the sets $\{B_i, A_i, i = 1, ..., n\}$ forming the distributions (δ, π) of a cloud and the corresponding α_i , the belief and plausibility measures of the random set s.t. $m(A_i \setminus B_{i-1}) = \alpha_{i-1} - \alpha_i$ are inner approximations of $\mathcal{P}_{\delta,\pi}$.

Proof.

 $A_i \setminus B_{i-1} \neq \emptyset$ (by definition) and the random set given above is always coherent with the marginal random sets induced by δ, π . Bounds are exact in case of comonotonicity.

Results summary

- A gen. P-box is a special case of random set and can be represented by two possibility distributions
- Clouds are also equivalent to a pair of possibility distributions.
 - Comonotonic clouds are equivalent to generalized p-boxes and thus are a special case of random sets
 - Non-comonotonic clouds are not 2-monotone in the general case, but they can be easily approximated.

Continuous case on the real line

If our propositions hold in the continuous case on the real line, then a comonotonic cloud can be characterized by a continuous belief function (Similar to Smets, 2005) with uniform mass density, whose focal elements would be disjoint sets of the form $[x(\alpha), u(\alpha)] \cup [v(\alpha), y(\alpha)]$ where

$$\{x:\pi(x)\geq\alpha\}=[x(\alpha),y(\alpha)] \text{ and } \{x:\delta(x)\geq\alpha\}=[u(\alpha),v(\alpha)].$$

This remains to be proved.

The special case of thin clouds

A *thin* cloud ($\delta = \pi$) contains an ∞ of probability distributions (Dub. & Pra. 2005). The induced continuous bel. f. would be a uniform mass density distributed over doubletons $\{x(\alpha), y(\alpha)\}$

Cumulative distributions F^* , F_* are in the *thin* cloud

Towards generalization

Are results of the type

- $\mathcal{P}_{cloud} = \mathcal{P}_{\pi} \cap \mathcal{P}_{1-\delta}$
- Structure of comonotonic clouds and gen. p-boxes are similar, and are ∞-monotone capacities
- Non-comonotonic clouds are not 2-monotone still true in spaces *X* of infinite cardinality? and under which (topological, measurability, ...) assumptions?

Operations on Gen. p-boxes and clouds

Are operations of

- Fusion
- Conditioning
- Propagation through a mathematical model

easy to define for gen. p-boxes and clouds? which property of the representations do they conserve? (e.g.

 $[\delta_1, \pi_1] \cap [\delta_2, \pi_2] = [\max(\delta_1, \delta_2), \min(\pi_1, \pi_2)]$ is easy to compute and is still a cloud, but can be expected to be an inner approx. of $\mathcal{P}_{[\delta_1, \pi_1]} \cap \mathcal{P}_{[\delta_2, \pi_2]}$