A unified view of some representation of imprecise probabilities

S. Destercke ¹ D. Dubois ²

¹Institute of radioprotection and nuclear safety Cadarache, France

²Toulouse institute of computer science University Paul-Sabatier

SMPS 06

Outline

Family \mathcal{P} of probabilities can be hard to represent (even by lower $(\underline{P}(A))$ and upper $(\overline{P}(A))$ probabilities). Simpler representations exist :

- Random Sets
- Possibility distribution
- P-Boxes
- Clouds

Outline

- Random Sets
- Possibility distribution
- P-Boxes
 - Generalized P-Boxes
 - Relationships between P-Boxes and random sets
 - Relationships between P-Boxes and possibility distribution
- 4 Clouds

Random Sets formalism

Definition

- Multi-valued mapping from probability space to space X
- Here, mass function $m: 2^X \to [0,1]$ and $\sum_{E \subset X} m(E) = 1$
- A set $E \subseteq X$ is a focal set iff m(E) > 0
- Belief measure : $Bel(A) = \sum_{E.E \subset A} m(E)$
- Plausibility measure : $PI(A) = \sum_{E,E \cap A \neq \emptyset} m(E)$

Probability family induced by random sets

$$\mathcal{P}_{Bel} = \{P | \forall A \subseteq X \text{ measurable, } Bel(A) \leq P(A) \leq Pl(A)\}$$

Outline

- Random Sets
- Possibility distribution
- 3 P-Boxes
 - Generalized P-Boxes
 - Relationships between P-Boxes and random sets
 - Relationships between P-Boxes and possibility distribution
- 4 Clouds

Possibility formalism

Definition

- Mapping $\pi: X \to [0,1]$ and $\exists x \in X \text{ s.t. } \pi(x) = 1$
- Possibility measure: $\Pi(A) = \sup_{x \in A} \pi(x)$
- Necessity measure: $N(A) = 1 \Pi(A^c)$

Possibility and random sets

Possibility distribution = random set with nested focal elements

Probability family induced by possibility distribution

$$\mathcal{P}_{\pi} = \{P | \forall A \subseteq X \text{ measurable, } N(A) \leq P(A) \leq \Pi(A)\}$$

Outline

- Random Sets
- Possibility distribution
- P-Boxes
 - Generalized P-Boxes
 - Relationships between P-Boxes and random sets
 - Relationships between P-Boxes and possibility distribution
- 4 Clouds

Outline

- Random Sets
- Possibility distribution
- P-Boxes
 - Generalized P-Boxes
 - Relationships between P-Boxes and random sets
 - Relationships between P-Boxes and possibility distribution
- 4 Clouds

Generalized cumulative distribution

Usual cumulative distribution

Let Pr be a probability function on \mathbb{R} : the cumulative distribution is $F(x) = \Pr((-\infty, x])$

Preliminary definitions

- Let X be a finite domain of n elements and $\alpha = (\alpha_1 \dots \alpha_n)$ a probability distribution
- R is a relation defining a complete ordering \leq_R on X
- a R-downset $(x]_R$ consist of every element x_i s.t. $x_i \leq_R x$

Definition

Given a relation R, a generalized cumulative distribution is defined as $F_R^{\alpha}(x) = \Pr((x|_R)$.

example

- $X = \{x_1, x_2, x_3\}$
- $\alpha = \{0.3, 0.5, 0.2\}$
- $R: x_i < x_j \text{ iff } i < j$
- $X_R = \{x_1, x_2, x_3\}$

- $F_R^{\alpha}(x_1) = P(x_1) = 0.3$
- $F_B^{\alpha}(x_2) = P(x_1, x_2) = 0.8$
- $F_{R}^{\alpha}(x_3) = P(x_1, x_2, x_3) = 1$

example

- $X = \{x_1, x_2, x_3\}$
- $\alpha = \{0.3, 0.5, 0.2\}$
- $R: x_i < x_i \text{ iff } i < j$
- $X_R = \{x_1, x_2, x_3\}$

- $F_R^{\alpha}(x_1) = P(x_1) = 0.3$
- $F_R^{\alpha}(x_2) = P(x_1, x_2) = 0.8$
- $F_{R}^{\alpha}(x_3) = P(x_1, x_2, x_3) = 1$

example

- $X = \{x_1, x_2, x_3\}$
- $\alpha = \{0.3, 0.5, 0.2\}$
- $R: x_i < x_j \text{ iff } i < j$
- $X_R = \{x_1, x_2, x_3\}$

- $F_R^{\alpha}(x_1) = P(x_1) = 0.3$
- $F_B^{\alpha}(x_2) = P(x_1, x_2) = 0.8$
- $F_{R}^{\alpha}(x_3) = P(x_1, x_2, x_3) = 1$

example

- $X = \{x_1, x_2, x_3\}$
- $\alpha = \{0.3, 0.5, 0.2\}$
- $R: x_i < x_j \text{ iff } i < j$
- $X_R = \{x_1, x_2, x_3\}$

- $F_R^{\alpha}(x_1) = P(x_1) = 0.3$
- $F_B^{\alpha}(x_2) = P(x_1, x_2) = 0.8$
- $F_{R}^{\alpha}(x_3) = P(x_1, x_2, x_3) = 1$

Generalized P-boxes: definition

Usual P-boxes

A P-box is a pair of cumulative distributions $(\underline{F}, \overline{F})$ bounding an imprecisely known distribution F $(\underline{F} \leq F \leq \overline{F})$

Definition

Given R, a generalized p-box is a pair of gen. cumulative distributions $(F_R^{\alpha}(x) \leq F_R^{\beta}(x))$ bounding an imprecisely known distribution $F_R(x)$

Probability family induced by generalized p-box

$$\mathcal{P}_{p-box} = \{P | \forall x \in X \text{ measurable, } F_R^{\alpha}(x) \leq F_R(x) \leq F_R^{\beta}(x)\}$$

Generalized P-boxes: constraint representation

- Let $A_i = (x_i]_R$ with $x_i \leq_R x_j$ iff i < j
- $\bullet \ A_1 \subset A_2 \subset \ldots \subset A_n$
- Gen. P-box can be encoded by following constraints :

$$\alpha_i \leq P(A_i) \leq \beta_i \qquad i = 1, \dots, n$$

$$\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_n \leq 1$$

$$\beta_1 \leq \beta_2 \leq \dots \leq \beta_n \leq 1$$

Generalized P-box: illustration

constraints

$$0.1 \le P(A_1) = P(x_1) \le 0.4$$

$$0.3 \le P(A_2) = P(x_1, x_2) \le 0.8$$

Generalized P-box: illustration

constraints

•
$$0.1 \le P(A_1) = P(x_1) \le 0.4$$

•
$$0.3 \le P(A_2) = P(x_1, x_2) \le 0.8$$

•
$$1 \leq P(A_3) = P(x_1, x_2, x_3) \leq 1$$

Outline

- Random Sets
- Possibility distribution
- P-Boxes
 - Generalized P-Boxes
 - Relationships between P-Boxes and random sets
 - Relationships between P-Boxes and possibility distribution
- 4 Clouds

Random sets/P-boxes relation

Theorem

Any generalized p-box is a special case of random set (there is a random set such that $\mathcal{P}_{\textit{Bel}} = \mathcal{P}_{\textit{p-box}}$)

Sketch of proof

Lower probabilities on every possible event are the same in the two cases

- Build partition of X
- ② Order α_i, β_i and rename them γ_i
- Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- Build partition of X
- ② Order α_i, β_i and rename them γ_i
- Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- \odot Build partition of X
- ② Order α_i, β_i and rename them γ_i
- Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- \bigcirc Build partition of X
- ② Order α_i, β_i and rename them γ_I
- Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- \odot Build partition of X
- ② Order α_i, β_i and rename them γ_I
- Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- \bigcirc Build partition of X
- Order α_i , β_i and rename them γ_l
- Solution Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- \bigcirc Build partition of X
- ② Order α_i, β_i and rename them γ_I
- Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- Build partition of X
- Order α_i, β_i and rename them γ_I
- Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- Build partition of X
- ② Order α_i, β_i and rename them γ_I
- Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

- Build partition of X
- Order α_i, β_i and rename them γ_I
- Build focal sets E_i with weights $m(E_l) = \gamma_l \gamma_{l-1}$

•
$$m(E_1) = m(\{x_1\}) = 0.1$$

•
$$m(E_2) = m(\{x_1, x_2\}) = 0.2$$

•
$$m(E_3) = m(\{x_1, x_2, x_3\}) = 0.1$$

•
$$m(E_4) = m(\{x_2, x_3\}) = 0.4$$

•
$$m(E_5) = m(\{x_3\}) = 0.2$$

•
$$m(E_1) = m(\{x_1\}) = 0.1$$

•
$$m(E_2) = m(\{x_1, x_2\}) = 0.2$$

•
$$m(E_3) = m(\{x_1, x_2, x_3\}) = 0.1$$

•
$$m(E_4) = m(\{x_2, x_3\}) = 0.4$$

•
$$m(E_5) = m(\{x_3\}) = 0.2$$

•
$$m(E_1) = m(\{x_1\}) = 0.1$$

•
$$m(E_2) = m(\{x_1, x_2\}) = 0.2$$

•
$$m(E_3) = m(\{x_1, x_2, x_3\}) = 0.1$$

•
$$m(E_4) = m(\{x_2, x_3\}) = 0.4$$

•
$$m(E_5) = m(\{x_3\}) = 0.2$$

•
$$m(E_1) = m(\{x_1\}) = 0.1$$

•
$$m(E_2) = m(\{x_1, x_2\}) = 0.2$$

•
$$m(E_3) = m(\{x_1, x_2, x_3\}) = 0.1$$

•
$$m(E_4) = m(\{x_2, x_3\}) = 0.4$$

•
$$m(E_5) = m(\{x_3\}) = 0.2$$

•
$$m(E_1) = m(\{x_1\}) = 0.1$$

•
$$m(E_2) = m(\{x_1, x_2\}) = 0.2$$

•
$$m(E_3) = m(\{x_1, x_2, x_3\}) = 0.1$$

•
$$m(E_4) = m(\{x_2, x_3\}) = 0.4$$

•
$$m(E_5) = m(\{x_3\}) = 0.2$$

Outline

- Random Sets
- Possibility distribution
- P-Boxes
 - Generalized P-Boxes
 - Relationships between P-Boxes and random sets
 - Relationships between P-Boxes and possibility distribution
- 4 Clouds

Generalized cumulative distribution

An upper generalized cumulative distribution $F_R(x)$ can be viewed as a possibility distribution π_R , since $\max_{x \in A} F_R(x) \ge \Pr(A)$

Generalized P-box

- Two cumulative distributions $F_R^{\beta}(x) \geq F_R^{\alpha}(x)$
- Upper bound $F_R^{\beta}(x)$ can be viewed as a possibility distribution $\to F_R^{\beta}(x) = \pi_R^{\beta}$
- Lower bound $F_R^{\alpha}(x)$ can be viewed as a possibility distribution $\to F_R^{\alpha}(x) = 1 \pi_R^{\alpha}$

Probability families equivalence

We have that
$$\mathcal{P}_{p-\mathit{box}} = \mathcal{P}_{\pi_R^{\alpha}} \cap \mathcal{P}_{\pi_R^{\beta}}$$

Illustration

Relations

$$(\mathcal{P}_{p-box} = \mathcal{P}_{\pi_{R}^{\alpha}} \cap \mathcal{P}_{\pi_{P}^{\beta}})$$

Illustration

Relations

$$(\mathcal{P}_{\textit{p-box}} = \mathcal{P}_{\pi_{\textit{R}}^{\alpha}} \cap \mathcal{P}_{\pi_{\textit{R}}^{\beta}}) \supset (\mathcal{P}_{\min(\pi_{\textit{R}}^{\alpha}, \pi_{\textit{R}}^{\beta})})$$

Outline

- Random Sets
- Possibility distribution
- P-Boxes
 - Generalized P-Boxes
 - Relationships between P-Boxes and random sets
 - Relationships between P-Boxes and possibility distribution
- Clouds

Definition

- A cloud Can be viewed as a pair of distributions $[\delta(x), \pi(x)]$
- A r.v. $X \in \text{cloud iff } P(\delta(x) \ge \alpha) \le 1 \alpha \le P(\pi(x) > \alpha)$
- •
- •
- •

Definition

- A cloud Can be viewed as a pair of distributions $[\delta(x), \pi(x)]$
- A r.v. $X \in \text{cloud iff } P(\delta(x) \ge \alpha) \le 1 \alpha \le P(\pi(x) > \alpha)$
- \bullet π is a possibility distribution

•

4

Definition

- A cloud Can be viewed as a pair of distributions $[\delta(x), \pi(x)]$
- A r.v. $X \in \text{cloud iff } P(\delta(x) \ge \alpha) \le 1 \alpha \le P(\pi(x) > \alpha)$
- \bullet π is a possibility distribution
- 1δ is a possibility distribution

4

Definition

- A cloud Can be viewed as a pair of distributions $[\delta(x), \pi(x)]$
- A r.v. $X \in \text{cloud iff } P(\delta(x) \ge \alpha) \le 1 \alpha \le P(\pi(x) > \alpha)$
- \bullet π is a possibility distribution
- 1 $-\delta$ is a possibility distribution
- We have that $\mathcal{P}_{cloud} = \mathcal{P}_{\pi} \cap \mathcal{P}_{1-\delta}$

Discrete clouds: formalism

Discrete clouds as collection of sets

Discrete clouds can be viewed as two set collections

•
$$A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n \quad (\pi_X)$$

•
$$B_1 \subseteq B_2 \subseteq \ldots \subseteq B_n \quad (\delta_x)$$

•
$$B_i \subseteq A_i \quad (\delta_X \le \pi_X)$$

with constraints

•
$$P(B_i) \leq 1 - \alpha_{i+1} \leq P(A_i)$$

•
$$1 = \alpha_1 > \alpha_2 > \ldots > \alpha_n = 0$$

Relationship between clouds and generalized p-boxes

Theorem

A generalized p-box is a particular case of cloud

Proof.

- $F_B^{\beta}(x) > F_B^{\alpha}(x)$
- $F_R^{\beta}(x) \rightarrow$ possibility distribution π_R^{β}
- $F_B^{\alpha}(x) \rightarrow \text{possibility distribution } \delta_B^{\alpha}$
- Gen. P-box equivalent to the cloud $[\delta_R^{\alpha}, \pi_R^{\beta}]$

Illustration

Relationship between clouds and generalized p-boxes

Theorem

A cloud is a gen. p-box iff the sets $\{A_i, B_i\}$ form a complete order with respect to inclusion $(\forall i, j \ A_i \subseteq B_j \ or \ A_i \supseteq B_j)$

Corollary

A cloud $[\pi_1, \pi_2]$ is a generalized p-box iff π_1, π_2 are comonotonic

Graphical summary

Summary

- A gen. P-box is a special case of random set and can be represented by two possibility distributions
- Comonotonic clouds are equivalent to a gen. P-box.
- Open questions, perspectives
 - Test clouds as descriptive formalism (How to elicit them ?) and as practical representation.
 - Extending results to continuous framework and to lower/upper previsions.