A unified view of some representation of imprecise probabilities

S. Destercke ${ }^{1} \quad$ D. Dubois ${ }^{2}$
${ }^{1}$ Institute of radioprotection and nuclear safety Cadarache, France
${ }^{2}$ Toulouse institute of computer science
University Paul-Sabatier

SMPS 06

S. Destercke, D. Dubois

A unified view of some representation of imprecise probabilities

Outline

Family \mathcal{P} of probabilities can be hard to represent (even by lower $(\underline{P}(A))$ and upper $(\bar{P}(A))$ probabilities). Simpler representations exist :
(9) Random Sets
(2) Possibility distribution
(3) P-Boxes
(4) Clouds

Outline

(1) Random Sets
(2) Possibility distributionP-Boxes

- Generalized P-Boxes
- Relationships between P-Boxes and random sets
- Relationships between P-Boxes and possibility distribution
(4) Clouds

Random Sets formalism

Definition

- Multi-valued mapping from probability space to space X
- Here, mass function $m: 2^{X} \rightarrow[0,1]$ and $\sum_{E \subseteq X} m(E)=1$
- A set $E \subseteq X$ is a focal set iff $m(E)>0$
- Belief measure : $\operatorname{Bel}(A)=\sum_{E, E \subseteq A} m(E)$
- Plausibility measure : $P I(A)=\sum_{E, E \cap A \neq \emptyset} m(E)$

Probability family induced by random sets
$\mathcal{P}_{\text {Bel }}=\{P \mid \forall A \subseteq X$ measurable, $\operatorname{Be}((A) \leq P(A) \leq P I(A)\}$

Outline

(1)
 Random Sets

(2) Possibility distribution

P-Boxes- Generalized P-Boxes
- Relationships between P-Boxes and random sets
- Relationships between P-Boxes and possibility distribution
(4) Clouds

Possibility formalism

Definition

- Mapping $\pi: X \rightarrow[0,1]$ and $\exists x \in X$ s.t. $\pi(x)=1$
- Possibility measure: $\Pi(A)=\sup _{x \in A} \pi(x)$
- Necessity measure: $N(A)=1-\Pi\left(A^{c}\right)$

Possibility and random sets

Possibility distribution = random set with nested focal elements
Probability family induced by possibility distribution

$$
\mathcal{P}_{\pi}=\{P \mid \forall A \subseteq X \text { measurable, } N(A) \leq P(A) \leq \Pi(A)\}
$$

Outline

-
 Random Sets

(2)
 Possibility distribution

(3) P-Boxes

- Generalized P-Boxes
- Relationships between P-Boxes and random sets
- Relationships between P-Boxes and possibility distribution
(4) Clouds

Outline

-
 Random Sets

(2)
 Possibility distribution

(3) P-Boxes

- Generalized P-Boxes
- Relationships between P-Boxes and random sets
- Relationships between P-Boxes and possibility distribution
(4) Clouds

Generalized cumulative distribution

Usual cumulative distribution

Let Pr be a probability function on \mathbb{R} : the cumulative distribution is $F(x)=\operatorname{Pr}((-\infty, x])$

Preliminary definitions

- Let X be a finite domain of n elements and $\alpha=\left(\alpha_{1} \ldots \alpha_{n}\right)$ a probability distribution
- R is a relation defining a complete ordering \leq_{R} on X
- a R-downset $(x]_{R}$ consist of every element x_{i} s.t. $x_{i} \leq_{R} x$

Definition

Given a relation R, a generalized cumulative distribution is defined as $F_{R}^{\alpha}(x)=\operatorname{Pr}\left((x]_{R}\right)$.

Generalized cumulative distribution : illustration

example

- $X=\left\{x_{1}, x_{2}, x_{3}\right\}$
- $\alpha=\{0.3,0.5,0.2\}$
- $R: x_{i}<x_{j}$ iff $i<j$
- $X_{R}=\left\{x_{1}, x_{2}, x_{3}\right\}$

Cumulative prob.

- $F_{R}^{\alpha}\left(x_{1}\right)=P\left(x_{1}\right)=0.3$
- $F_{R}^{\alpha}\left(x_{2}\right)=P\left(x_{1}, x_{2}\right)=0.8$
- $F_{R}^{\alpha}\left(x_{3}\right)=P\left(x_{1}, x_{2}, x_{3}\right)=1$

Generalized cumulative distribution : illustration

example

- $X=\left\{x_{1}, x_{2}, x_{3}\right\}$
- $\alpha=\{0.3,0.5,0.2\}$
- $R: x_{i}<x_{j}$ iff $i<j$
- $X_{R}=\left\{x_{1}, x_{2}, x_{3}\right\}$

Cumulative prob.

- $F_{R}^{\alpha}\left(x_{1}\right)=P\left(x_{1}\right)=0.3$
- $F_{R}^{\alpha}\left(x_{2}\right)=P\left(x_{1}, x_{2}\right)=0.8$
- $F_{R}^{\alpha}\left(x_{3}\right)=P\left(x_{1}, x_{2}, x_{3}\right)=1$

Generalized cumulative distribution : illustration

example

- $X=\left\{x_{1}, x_{2}, x_{3}\right\}$
- $\alpha=\{0.3,0.5,0.2\}$
- $R: x_{i}<x_{j}$ iff $i<j$
- $X_{R}=\left\{x_{1}, x_{2}, x_{3}\right\}$

Cumulative prob.

- $F_{R}^{\alpha}\left(x_{1}\right)=P\left(x_{1}\right)=0.3$
- $F_{R}^{\alpha}\left(x_{2}\right)=P\left(x_{1}, x_{2}\right)=0.8$
- $F_{R}^{\alpha}\left(x_{3}\right)=P\left(x_{1}, x_{2}, x_{3}\right)=1$

Generalized cumulative distribution : illustration

example

- $X=\left\{x_{1}, x_{2}, x_{3}\right\}$
- $\alpha=\{0.3,0.5,0.2\}$
- $R: x_{i}<x_{j}$ iff $i<j$
- $X_{R}=\left\{x_{1}, x_{2}, x_{3}\right\}$

Cumulative prob.

- $F_{R}^{\alpha}\left(x_{1}\right)=P\left(x_{1}\right)=0.3$
- $F_{R}^{\alpha}\left(x_{2}\right)=P\left(x_{1}, x_{2}\right)=0.8$
- $F_{R}^{\alpha}\left(x_{3}\right)=P\left(x_{1}, x_{2}, x_{3}\right)=1$

Generalized P-boxes : definition

Usual P-boxes

A P-box is a pair of cumulative distributions (F, \bar{F}) bounding an imprecisely known distribution $F(F \leq F \leq \bar{F})$

Definition

Given R, a generalized p -box is a pair of gen. cumulative distributions ($F_{R}^{\alpha}(x) \leq F_{R}^{\beta}(x)$) bounding an imprecisely known distribution $F_{R}(x)$

Probability family induced by generalized p-box

$$
\mathcal{P}_{p-\text { box }}=\left\{P \mid \forall x \in X \text { measurable, } F_{R}^{\alpha}(x) \leq F_{R}(x) \leq F_{R}^{\beta}(x)\right\}
$$

Generalized P-boxes : constraint representation

- Let $A_{i}=\left(x_{i}\right]_{R}$ with $x_{i} \leq_{R} x_{j}$ iff $i<j$
- $A_{1} \subset A_{2} \subset \ldots \subset A_{n}$
- Gen. P-box can be encoded by following constraints :

$$
\begin{gathered}
\alpha_{i} \leq P\left(A_{i}\right) \leq \beta_{i} \quad i=1, \ldots, n \\
\alpha_{1} \leq \alpha_{2} \leq \ldots \leq \alpha_{n} \leq 1 \\
\beta_{1} \leq \beta_{2} \leq \ldots \leq \beta_{n} \leq 1
\end{gathered}
$$

Generalized P-box : illustration

constraints

- $0.1 \leq P\left(A_{1}\right)=P\left(x_{1}\right) \leq 0.4$
- $0.3 \leq P\left(A_{2}\right)=P\left(x_{1}, x_{2}\right) \leq 0.8$
- $1 \leq P\left(A_{3}\right)=P\left(x_{1}, x_{2}, x_{3}\right) \leq 1$

Generalized P-box : illustration

constraints

- $0.1 \leq P\left(A_{1}\right)=P\left(x_{1}\right) \leq 0.4$
- $0.3 \leq P\left(A_{2}\right)=P\left(x_{1}, x_{2}\right) \leq 0.8$
- $1 \leq P\left(A_{3}\right)=P\left(x_{1}, x_{2}, x_{3}\right) \leq 1$

Outline

Random Sets

(2)
 Possibility distribution

(3) P-Boxes

- Generalized P-Boxes
- Relationships between P-Boxes and random sets
- Relationships between P-Boxes and possibility distribution
(4) Clouds

Random sets/P-boxes relation

Theorem

Any generalized p-box is a special case of random set (there is a random set such that $\left.\mathcal{P}_{\text {Bel }}=\mathcal{P}_{p-\text { box }}\right)$

Sketch of proof

Lower probabilities on every possible event are the same in the two cases

P－Box \rightarrow random set algorithm

algorithm

（1）Build partition of X
（2）Order α_{i}, β_{i} and rename them γ_{I}
（3）Build focal sets E_{i} with weights $m\left(E_{l}\right)=\gamma_{I}-\gamma_{I-1}$

P－Box \rightarrow random set algorithm

algorithm

（1）Build partition of X
（2）Order α_{i}, β_{i} and rename them γ_{I}
（3）Build focal sets E_{i} with weights $m\left(E_{l}\right)=\gamma_{I}-\gamma_{I-1}$

P-Box \rightarrow random set algorithm

algorithm

(1) Build partition of X
(2) Order α_{i}, β_{i} and rename them γ_{I}
(3) Build focal sets E_{i} with weights $m\left(E_{l}\right)=\gamma_{I}-\gamma_{I-1}$

P-Box \rightarrow random set algorithm

algorithm

(1) Build partition of X
(2) Order α_{i}, β_{i} and rename them γ_{l}
(3) Build focal sets E_{i} with weights $m\left(E_{l}\right)=\gamma_{I}-\gamma_{I-1}$

P－Box \rightarrow random set algorithm

algorithm

（1）Build partition of X
（2）Order α_{i}, β_{i} and rename them γ_{l}
（3）Build focal sets E_{i} with weights $m\left(E_{l}\right)=\gamma_{I}-\gamma_{I-1}$

P-Box \rightarrow random set algorithm

algorithm

A_{1}	A_{2}	\cdots	A_{i}	\cdots
	\cdots	$A_{n}=X$		
F_{1}	F_{2}	\cdots	F_{i}	\cdots
$\alpha_{0}=\beta_{0}=0 \leq \alpha_{1} \leq \ldots \leq \beta_{n} \leq 1=\beta_{n+1}=\alpha_{n+1}$				

(1) Build partition of X
(2) Order α_{i}, β_{i} and rename them γ_{l}
(3) Build focal sets E_{i} with weights $m\left(E_{I}\right)=\gamma_{I}-\gamma_{l-1}$

P-Box \rightarrow random set algorithm

algorithm

(1) Build partition of X
(2) Order α_{i}, β_{i} and rename them $\gamma_{\text {I }}$
(3) Build focal sets E_{i} with weights $m\left(E_{l}\right)=\gamma_{I}-\gamma_{I-1}$

P-Box \rightarrow random set algorithm

$$
\begin{array}{l:c:c:c}
A_{1} & A_{2} & \cdots & A_{i} \\
\cdots & \cdots & A_{n}=X \\
\hline \hline \overline{\underline{\underline{1}}}: & \ldots & \ldots & F_{n} \\
\hdashline F_{1} & F_{2} & \ldots & F_{i} \\
\alpha_{0}=\beta_{0}=0 \leq \alpha_{1} \leq \ldots \leq \beta_{n} \leq 1=\beta_{n+1}=\alpha_{n+1} \\
\alpha_{0}=\gamma_{0}=0 \leq \gamma_{1} \leq \ldots \leq \gamma_{2 n} \leq 1=\gamma_{2 n+1}=\beta_{n+1} \\
m\left(E_{l}\right)=\gamma_{l}-\gamma_{l-1} \\
\text { with } E_{l}=E_{l-1} \cup F_{i+1} & \text { if } \gamma_{l-1}=\alpha_{i} \\
\text { with } E_{l}=E_{l-1} \backslash F_{i} \text { if } \gamma_{l-1}=\beta_{i}
\end{array}
$$

algorithm

(1) Build partition of X
(2) Order α_{i}, β_{i} and rename them γ_{l}
(3) Build focal sets E_{i} with weights

$$
m\left(E_{l}\right)=\gamma_{l}-\gamma_{l-1}
$$

P-Box \rightarrow random set algorithm

$$
\begin{array}{l:c:c:c}
A_{1} & A_{2} & \cdots & A_{i} \\
\hdashline \equiv F_{1} & F_{2} & \cdots & F_{i} \\
\alpha_{0}=\beta_{0}=0 \leq \alpha_{1} \leq \ldots \leq \beta_{n} \leq 1=\beta_{n+1}=\alpha_{n+1} \\
\alpha_{0}=\gamma_{0}=0 \leq \gamma_{1} \leq \ldots \leq \gamma_{2 n} \leq 1=\gamma_{2 n+1}=\beta_{n+1} \\
m\left(E_{l}\right)=\gamma_{I}-\gamma_{I-1} \\
\text { with } E_{l}=E_{l-1} \cup F_{i+1} \text { if } \gamma_{I-1}=\alpha_{i} \\
\text { with } E_{l}=E_{l-1} \backslash F_{i} \text { if } \gamma_{I-1}=\beta_{i} \\
m\left(E_{1}\right)=\gamma_{1}-\gamma_{0}=\alpha_{1}-\alpha_{0}=m\left(F_{1}\right)
\end{array}
$$

algorithm

(1) Build partition of X
(2) Order α_{i}, β_{i} and rename them γ_{l}
(3) Build focal sets E_{i} with weights

$$
m\left(E_{l}\right)=\gamma_{I}-\gamma_{l-1}
$$

P-Box \rightarrow random set algorithm

graphical representation

Random Set

- $m\left(E_{1}\right)=m\left(\left\{x_{1}\right\}\right)=0.1$
- $m\left(E_{2}\right)=m\left(\left\{x_{1}, x_{2}\right\}\right)=0.2$
- $m\left(E_{3}\right)=m\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)=0.1$
- $m\left(E_{4}\right)=m\left(\left\{x_{2}, x_{3}\right\}\right)=0.4$
- $m\left(E_{5}\right)=m\left(\left\{x_{3}\right\}\right)=0.2$

graphical representation

Random Set

- $m\left(E_{1}\right)=m\left(\left\{x_{1}\right\}\right)=0.1$
- $m\left(E_{2}\right)=m\left(\left\{x_{1}, x_{2}\right\}\right)=0.2$
- $m\left(E_{3}\right)=m\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)=0.1$
- $m\left(E_{4}\right)=m\left(\left\{x_{2}, x_{3}\right\}\right)=0.4$
- $m\left(E_{5}\right)=m\left(\left\{x_{3}\right\}\right)=0.2$

graphical representation

Random Set

- $m\left(E_{1}\right)=m\left(\left\{x_{1}\right\}\right)=0.1$
- $m\left(E_{2}\right)=m\left(\left\{x_{1}, x_{2}\right\}\right)=0.2$
- $m\left(E_{3}\right)=m\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)=0.1$
- $m\left(E_{4}\right)=m\left(\left\{x_{2}, x_{3}\right\}\right)=0.4$
- $m\left(E_{5}\right)=m\left(\left\{x_{3}\right\}\right)=0.2$

graphical representation

Random Set

- $m\left(E_{1}\right)=m\left(\left\{x_{1}\right\}\right)=0.1$
- $m\left(E_{2}\right)=m\left(\left\{x_{1}, x_{2}\right\}\right)=0.2$
- $m\left(E_{3}\right)=m\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)=0.1$
- $m\left(E_{4}\right)=m\left(\left\{x_{2}, x_{3}\right\}\right)=0.4$
- $m\left(E_{5}\right)=m\left(\left\{x_{3}\right\}\right)=0.2$

graphical representation

Random Set

- $m\left(E_{1}\right)=m\left(\left\{x_{1}\right\}\right)=0.1$
- $m\left(E_{2}\right)=m\left(\left\{x_{1}, x_{2}\right\}\right)=0.2$
- $m\left(E_{3}\right)=m\left(\left\{x_{1}, x_{2}, x_{3}\right\}\right)=0.1$
- $m\left(E_{4}\right)=m\left(\left\{x_{2}, x_{3}\right\}\right)=0.4$
- $m\left(E_{5}\right)=m\left(\left\{x_{3}\right\}\right)=0.2$

Outline

(4)
 Random Sets

(2)
 Possibility distribution

(3) P-Boxes

- Generalized P-Boxes
- Relationships between P-Boxes and random sets
- Relationships between P-Boxes and possibility distribution
(4) Clouds

Generalized cumulative distribution

An upper generalized cumulative distribution $F_{R}(x)$ can be viewed as a possibility distribution π_{R}, since $\max _{x \in A} F_{R}(x) \geq \operatorname{Pr}(A)$

Generalized P-box

- Two cumulative distributions $F_{R}^{\beta}(x) \geq F_{R}^{\alpha}(x)$
- Upper bound $F_{R}^{\beta}(x)$ can be viewed as a possibility distribution $\rightarrow F_{R}^{\beta}(x)=\pi_{R}^{\beta}$
- Lower bound $F_{R}^{\alpha}(x)$ can be viewed as a possibility distribution $\rightarrow F_{R}^{\alpha}(x)=1-\pi_{R}^{\alpha}$

Probability families equivalence

$$
\text { We have that } \mathcal{P}_{p-b o x}=\mathcal{P}_{\pi_{R}^{\alpha}} \cap \mathcal{P}_{\pi_{R}^{\beta}}
$$

Illustration

Relations

$$
\left(\mathcal{P}_{p-b o x}=\mathcal{P}_{\pi_{R}^{\alpha}} \cap \mathcal{P}_{\pi_{R}^{\beta}}\right)
$$

Illustration

Relations

$$
\left(\mathcal{P}_{p-\text { box }}=\mathcal{P}_{\pi_{R}^{\alpha}} \cap \mathcal{P}_{\pi_{R}^{\beta}}\right) \supset\left(\mathcal{P}_{\min \left(\pi_{R}^{\alpha}, \pi_{R}^{\beta}\right)}\right)
$$

Outline

Random Sets

Possibility distribution

P-Boxes- Generalized P-Boxes
- Relationships between P-Boxes and random sets
- Relationships between P-Boxes and possibility distribution

(4) Clouds

Clouds : Introduction

Definition

- A cloud Can be viewed as a pair of distributions $[\delta(x), \pi(x)]$
- A r.v. $\boldsymbol{X} \in$ cloud iff $P(\delta(x) \geq \alpha) \leq 1-\alpha \leq P(\pi(x)>\alpha)$
-
-
-

Clouds : Introduction

Definition

- A cloud Can be viewed as a pair of distributions $[\delta(x), \pi(x)]$
- A r.v. $X \in$ cloud iff $P(\delta(x) \geq \alpha) \leq 1-\alpha \leq P(\pi(x)>\alpha)$
- π is a possibility distribution
-

$-$

Clouds : Introduction

Definition

- A cloud Can be viewed as a pair of distributions $[\delta(x), \pi(x)]$
- A r.v. $\boldsymbol{X} \in$ cloud iff $P(\delta(x) \geq \alpha) \leq 1-\alpha \leq P(\pi(x)>\alpha)$
- π is a possibility distribution
- $1-\delta$ is a possibility distribution
$-$

Clouds : Introduction

Definition

- A cloud Can be viewed as a pair of distributions $[\delta(x), \pi(x)]$
- A r.v. $X \in$ cloud iff $P(\delta(x) \geq \alpha) \leq 1-\alpha \leq P(\pi(x)>\alpha)$
- π is a possibility distribution
- $1-\delta$ is a possibility distribution
- We have that $\mathcal{P}_{\text {cloud }}=\mathcal{P}_{\pi} \cap \mathcal{P}_{1-\delta}$

Discrete clouds : formalism

Discrete clouds as collection of sets
Discrete clouds can be viewed as two set collections

- $A_{1} \subseteq A_{2} \subseteq \ldots \subseteq A_{n} \quad\left(\pi_{x}\right)$
- $B_{1} \subseteq B_{2} \subseteq \ldots \subseteq B_{n} \quad\left(\delta_{x}\right)$
- $B_{i} \subseteq A_{i} \quad\left(\delta_{x} \leq \pi_{x}\right)$
with constraints
- $P\left(B_{i}\right) \leq 1-\alpha_{i+1} \leq P\left(A_{i}\right)$
- $1=\alpha_{1}>\alpha_{2}>\ldots>\alpha_{n}=0$

Relationship between clouds and generalized p-boxes

Theorem

A generalized p-box is a particular case of cloud

Proof.

- $F_{R}^{\beta}(x)>F_{R}^{\alpha}(x)$
- $F_{R}^{\beta}(x) \rightarrow$ possibility distribution π_{R}^{β}
- $F_{R}^{\alpha}(x) \rightarrow$ possibility distribution δ_{R}^{α}
- Gen. P-box equivalent to the cloud $\left[\delta_{R}^{\alpha}, \pi_{R}^{\beta}\right]$

Illustration

Relationship between clouds and generalized p-boxes

Theorem

A cloud is a gen. p-box iff the sets $\left\{A_{i}, B_{i}\right\}$ form a complete order with respect to inclusion ($\forall i, j A_{i} \subseteq B_{j}$ or $A_{i} \supseteq B_{j}$)

Corollary

A cloud $\left[\pi_{1}, \pi_{2}\right]$ is a generalized p-box iff π_{1}, π_{2} are comonotonic

Graphical summary

－ㅁ

Summary

- A gen. P-box is a special case of random set and can be represented by two possibility distributions
- Comonotonic clouds are equivalent to a gen. P-box.
- Open questions, perspectives
- Test clouds as descriptive formalism (How to elicit them ?) and as practical representation.
- Extending results to continuous framework and to lower/upper previsions.

